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Abstract

Active portfolio management is about leveraging forecasts. The Black and Litterman Global Portfolio

Optimisation Model (BL) (Black and Litterman, 1992) sets forecast in a Bayesian analytic framework. In

this framework, portfolio manager (PM) needs only produce views and the model translates the views into

security return forecasts. As a portfolio construction tool, the BL model is appealing both in theory and in

practice.

Although there has been no shortage of literature exploring it, the model still appears somehow mys-

terious and suffers from practical issues. This paper is dedicated to enabling better understanding of the

model itself. It is featured by: -

¦ An economic interpretation

¦ A clarification of the model assumptions and formulation

¦ An implementation guidance

¦ A dimension-reduction technique to enable large portfolio applications

¦ A full proof of the main result in the appendix

We also form a checklist of other practical issues that we aim to address in our forthcoming papers.
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1 Introduction

Active portfolio management is about leveraging forecasts. As a means of forecast, portfolio managers (PM)

or analysts collect information, generate views, and seek to convert them into optimal portfolio holdings.

These views may not necessarily be explicit security return predictions, but could be views on relative

performance or portfolio strategies1. On the other hand, portfolio optimisers do not admit views directly as

inputs, but rather expects one explicit return forecast for each security. In order to feed an optimiser, PMs

need to translate their views into explicit return forecasts for those view-relevant securities, and are forced

to come up with some number (often zero) to represent ‘no view’. This practice immediately attracts two

questions:

(1) What is the appropriate way of translating PM views into explicit return forecasts?

(2) Is it legitimate to use zero return to represent ‘no view’?

Regarding the second question, zero-mean return forecasts will be treated by the optimiser relentlessly

as views. A typical response of the optimiser will be to use this security to leverage others on which the

PM expresses optimism. This easily gives rise to ‘unexpected’ behaviours (i.e., unstable, counter-intuitive

or corner solutions). Yet in this situation, imposing constraints is not the ultimate solution since this does

not address its underlying cause.

To the first question, the Black-Litterman Global Portfolio Optimisation Model (BL) (Black and Litter-

man, 1992) provides an elegant answer. The model sets forecast in a Bayesian analytic framework. In this

framework, the PM needs only produce a flexible number of views and the model smoothly translates the

views into explicit security return forecasts together with an updated covariance matrix - exactly as what a

conventional portfolio optimiser expects. If the views arrive in an acceptable form, i.e., linear views, this

model can fully consume them.

Moreover, the model handles the second question with ease: without view, there are theoretical justifications

for taking the market equilibrium returns as the default forecasts. A remarkable feature of this approach is

robustness. Since the posterior views are a combination of the market and the PM views, PMs have a com-

mon layer, the market view, as their starting point. Without views, the best strategy is to stick to the market

view. With some views, the portfolio should be tilted to reflect these views combined. Since the market view

is always considered, it is less likely to run into unstable or corner solutions. In case the PM holds some

strong views that dominate the market view, the model also allows the results to be significantly adjusted

towards these views. Rather than erratic, this should be considered as expected and intuitive.

Based on these, the BL model is appealing in theory and natural in practice. However, we still have not

seen wide applications of it. We attribute this to two main reasons:

• The model deserves further explanation.

1Views are often also expressed in terms of fundamental or macroeconomic factors. In a forthcoming paper, we will develop a

technique for factor-based allocation.
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• Some practical issues may have also frustrated applications, e.g., confidence parameter setting, alter-

native views (e.g., factor views, stock-specific views), curse of dimensionality (when applied to large

portfolios), prior setting (e.g., equilibrium is an abstract concept), optimiser issues, risk model quality,

non-linearity, non-normality issues etc.

Although there has been no shortage of literature exploring either the applications or the frontiers of

the model (e.g., Jones, Lim and Zangari, 2007; Meucci, 2006; Martellini and Ziemann, 2007; Zhou, 2008

etc.), we have seen few documents explaining it (see for example, Satchell and Scowcroft, 2000; Idzorek,

2004); let alone taking these practical issues seriously. We have therefore done some significant work to

make the model practical. As a starting point, this paper focuses on an explanation of the original model.

By exploring the information processing challenges encountered in a typical portfolio management process,

we enrich Black and Litterman (1992)’s original motivation for the BL model. We then establish that the

BL model is buttressed by three pillars: the Semi-Strong Market Efficiency assumption, the Capital Asset

Pricing Model (CAPM), and the Bayes’ Rule. With the assistance of a carefully chosen notation system, we

formulate the model with particular attention to its technical details, i.e., model assumptions, main results,

and a full proof (in the appendix), to unveil the intrinsic logic. Implementation guidance then follows. In

order to enable large portfolio applications, we also discuss a dimension-reduction technique that resolves

the high-dimensionality issue before we reach our concluding remarks.

We will address a list of other practical issues in our forthcoming pieces as we develop new thoughts

around the topic.

Let us examine what motivates the BL model first.

2 Information Processing, Traditional Portfolio Optimisation and Its

Weaknesses

Suppose there are n securities in the investment universe. Assuming normality, the distribution of the se-

curity returns are fully determined by their first- and second moments, i.e., ~̃r[n×1] ∼ N(~m[n×1],V[n×n])23,

where ~m is the vector of real mean security returns and V is the real variance-covariance matrix. These

moments are not directly observable.

In a typical portfolio management process, people acquire public market information G together with

some private informationH in order to assess ~m and V. Considering the public information first, G typically

includes announced background economic driving information, historical market data, market consensus

(and maybe, mis-perception), and announced company-specific news etc. The information accrues over time

such that Gs ⊂ Gt (time s < t). With only the common market information G, continue assuming normality,

the perceived security returns distribution can be represented by the estimated first and second moments,

2In this paper, we use upper case R to stand for total return and lower case r for excess return, i.e., r = R− rf .
3In this paper, we use “x̃” to denote a random variable; “~x” to denote a vector; and a bold symbol “X” to denote a matrix. The

dimension(s) of vector and matrix will be clarified on its first appearance. For example, ~̃r[n×1] stands for the n by 1 return vector with

random entries.

3



i.e., ~̃r|G ∼ N(~̂µ[n×1],Σ[n×n])4, where ~̂µ = E(~̃r|G)5 is the vector of mean estimates and Σ = E(V|G) is the

variance-covariance matrix. The second-moment estimate Σ is generally regarded as more reliable than the

first-moment estimates ~̂µ. The latter is the holy grail of the investment industry.

On the other hand, the private information H generally includes particular insights of analysts which

are exclusively available to the PM. The insights usually come as a consequence of the analysts’ particu-

lar skills and efforts. Based on H, the PM forms her (private) view vector ~̂y[k×1]|H,G . These views are

then incorporated into the return forecast vector ~̂m[n×1] = E(~̃r|~̂y,H,G) with a revised covariance matrix

V̂[n×n] = E(V|~̂y,H,G). Under normality assumption, these estimates fully characterise the distribution

of the security returns. Plugging ~̂m and V̂ into a mean-variance optimiser, one solves a typical portfolio

optimisation problem.

In practice however, the incorporation of the public information G and the private information H in the

portfolio construction process is far from trivial. Many PMs focus on exploring public market data and that

acquired at a cost. Various quantitative techniques have been developed. Some commonly used extrapolation

techniques include, e.g., historical averages, equal means, risk-adjusted equal means6, or some modern time

series techniques with some prediction power etc.

Figure 1 shows the traditional process. Note views are formed drawing on various information sources,

and expressed in different forms, e.g., explicit returns, or relative performances or even in terms of strategies.

Before the BL model, it was not straightforward how to systematically convert such views or information

into explicit forecasts. Even in case of explicit return forecasts for some single security, there is still a lack

of mechanism to evaluate the implications of these signals for other securities induced by the dependence

structure.

Another, more fundamental, issue is that, the exploration of the commonly accessible market data might

be less productive than the private information. Economists argue that these techniques would not generate

insights superior to the market. In other words, if all we have are publicly available information and common

techniques, then why should we not just use the market view?

Black and Litterman (1992) (BL) take the point further and propose that without private views, the only

legitimate forecasts should be backed out from the market portfolio using the Capital Asset Pricing Model

(CAPM), the equilibrium pricer. In this case, it is optimal to simply use these forecasts to construct the

portfolio and manage it passively (by holding a slice of the market portfolio). With private information, the

forecasts should be updated based on the Bayes’ Rule, the fundamental law for belief updating. Therefore,

they recommend a Bayesian-analytic model for return forecasts and then resort to a conventional mean-

variance optimiser for portfolio construction. Consequently, the model addresses the lack-of-robustness

problem of portfolio optimisation through qualifying inputs rather than constraining the optimiser.

4In this paper, ~̃x|I is used to denote our perception of ~̃x after examining the information I. Since in the Bayesian framework,

updated perceptions are still considered random, we need such notation to distinguish them from mean (point) estimates E(~̃x|I).
5We use “x̂” to denote an estimate for x. Note in the traditional framework, estimates are considered deterministic; whereas in the

Bayesian framework, estimates are still random but with updated uncertainty.
6See Black and Litterman (1992) for a description and critiques of these methods.
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Source: Nomura

3 Three Pillars: Semi-Strong Market Efficiency, CAPM, and Bayes’

Rule

In the previous section, we refer to ~̃r ∼ N(~m,V) as the real distribution. Unlike in classical statistics

where the real means are considered deterministic (though unobservable), Bayesian statisticians consider

these as random themselves. Therefore, perceptions are always produced with some uncertainties, and are

represented by probabilities (i.e., probabilistic views). For example, after absorbing the public information

G, a PM forms her estimation ~̃r|G ∼ N(~̃µ,Σ). As she is still not certain about this, particularly the mean

vector ~̃µ, new information will always be sought after for further improvements.

Note the estimation ~̃r|G ∼ N(~̃µ,Σ) only represents this investor’s personal perspective. She then uses the

estimation to interact with the market. In a marketplace with countless investors, there would be countless

estimates at a time. Suppose they disagree on the mean vector ~̃µ, and so buy and sell into the market. The

market ‘witnesses’ all these actions driven by individual predictions and prices these securities ~̃r
M |~̃µ1,~̃µ2,...

∼
N(~̃µM ,ΣM ). The evaluation is beyond the ability of human beings and can only be undertaken by the

market.

Thanks to the CAPM, one can back-out the information from the market portfolio assuming equilibrium.

In other words, one may use the CAPM-assessed equilibrium estimation ~̃re|G ∼ N(~̂π,Σe) as a proxy for

the market view ~̃r
M |~̃µ1,~̃µ2,...

, where ~̂π is the vector of the CAPM-assessed excess returns7. Here, since the

market estimation is based on estimates of individual investors in the whole market, one should be more
7Unless otherwise specified, in this paper, all returns refer to those excess of the risk-free rate
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confident on ~̂π and thus the entries of Σe should be smaller than those of Σ. It may therefore be argued that,

without any superior private insights, one should prefer ~̃re|G to her own estimation ~̃r|G .

This basically means if all we have are public information and common techniques, the market may be

smarter than us. This argument reminds us of the semi-strong form of market efficiency hypothesis (Fama,

1970). The assumption suggests that all public information has been absorbed into the market pricing of

securities and can therefore not be explored to achieve abnormal returns. In other words, only with superior

private insight and techniques can the PM make superior returns.

In this vein, the BL assessment reduces to the CAPM-equilibrium layer in the absence of any private

information, where the security excess return vector can be backed-out from the market portfolio, i.e.,

~̂π[n×1] = ~̂
β[n×1][E(R̃M |G) − rf ] (where ~̂

β is the vector of security exposures to the market; E(R̃M |G)

is the expected (full) market return; and rf is the risk-free interest rate). In the Bayesian framework, ~̂π is

considered as the prior estimate, since private information has not been examined yet.

After examining the private information H, PM forms a vector of views8, ~̃y|H,G
9, usually in terms of

certain linear combinations of the securities in the universe, e.g., strategy, comparative performance views,

together with their performances. These have direct implications for the securities they cover and also, due

to the dependence structure, indirect implications for those in the universe not covered. So there is a need to

update her forecasts for the whole universe and the BL model rightly facilitates this. The updated forecasts

are denoted by ~̃r|~̃y,H,G , and called the posterior estimates.

It should be noted that, in the BL model, the private information H is not directly fed into security

return forecasts ~̃r|H,G ; but is first absorbed into PM views ~̃y|H,G , and then indirectly fed into the security

return forecasts. This is due to the belief that it is ‘private’ and the direct security updates ~̃r|H,G comes

only after private views, e.g., ~̃y|H,G , are digested by the market. However, the assumed view structure as

linear combination of security return forecasts is flexible enough to admit views in terms of explicit return

forecasts. So the linearity assumption is not restrictive.

The main contribution of the BL model is its unique insight enabling security returns to be assessed in the

Bayesian framework, drawing on some views on the underlying securities or their linear combinations. Its

closed-form solution for the posterior, ~̃r|~̃y,H,G , serves as a smooth view blender enabling PMs to incorporate

their view vector ~̃y|H,G into the portfolio construction and rebalancing process. (See Figure 2)

Comparative advantages of the model include: -

• PMs no longer need to produce forecasts for the full universe of securities. Instead, providing any

number k (0 6 k 6 n) of views suffices and these views can be relative (e.g., Security A will

outperform Security B by 2%) as well as absolute (e.g., Security A will grow by 10%).

• The resultant allocations tend also to be more robust and intuitive. This is because the process starts

from a common CAPM-based equilibrium layer. On top of this, tilts are generated to reflect the private

views.
8Normally, analysts/PMs form their views according to information arrivals. In the remainder of this paper, we use view and

information interchangeably.
9In the Bayesian framework, views should also be treated as random since there are always forecast errors.
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Now let us delve into the formulation of the model.

4 Model Formulation and Results

The model relies on two key technical assumptions.

Assumption 4.1 (Prior Return Forecasts) The prior return forecasts (based on the public information) are

normally distributed as follows:

~̃r|G ≡ ~̃µ ∼ N(~̂π, τΣ) (1)

where τ is a positive multiplier applied to the estimated covariance matrix Σ to proxy the prior error matrix.

Based on the economic reasoning in the previous section, this assumption is justified by: -

(a) With only public information G and supposing the market is already in equilibrium, the CAPM is

the legitimate market equilibrium pricer, and so ~̂π assesses ~̃r.

(b) However, since the market is not necessarily in equilibrium, the assessment ~̂π suffers from errors

Σe. Using a factor model-based argument, the model assumes Σe ∝ Σ, the estimated security

covariance. Moreover, as explained in the previous section, the elements of Σe should be smaller

than those of Σ in a market which demonstrates some level of semi-strong market efficiency; thus,

τ 6 110.

To assess distribution (1), we need to know the CAPM-based equilibrium return vector: ~̂π. Some linear

algebra drawing on the CAPM yields ~̂π = (E(R̃M |G)−rf

σ2
M

)Σ~wM [n×1]. This allows us to back out security

returns from the current market portfolio ~wM . Based on ~̂π, PMs form the equilibrium layer of their portfolio

and then tilt their portfolio upon arrival of new private information.

Quite realistically, PMs make investment decisions relying on some (limited number of) theories, views

or strategies. Suppose a PM has k (6 n) private views (or theories etc.) that are expressed or approximately

represented by some linear combinations of security returns:

P̃[k×n] · ~̃r ≈ ~̃y|~̃r[k×1]
(2)

where P̃ is a matrix of view structure parameters or a vector of k strategies; and ~̃y|~̃r represents the PM’s

view forecast vector.

In (2), the views/theories can somehow be qualitative, and they need to be ‘calibrated’ against available

information.

Upon arrival of the private information H, it is assumed that the PM still does not have explicit re-

turn estimates ~̃r|H,G ; yet (2) materialises to the extent that P̃|H,G
belief→ P[k×n] and thus, the updated view

becomes:

P~̃r|H,G = ~̃y|~̃r,H,G + ~̃ε[k×1] (3)

10As we develop more insights in our forthcoming papers, we will see that τ is a subjective parameter and such restriction does not

exist.
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where P is the concretised view structure matrix; ~̃r|H,G is the (unknown but required) posterior vector of

return estimates; ~̃y|~̃r,H,G is the vector of updated view estimation (given a realisation of ~̃r); and ~̃ε is the

vector of view estimation errors.

Note the structure of views as linear combination of prior return forecasts is flexible enough to accom-

modate relative as well as absolute views regarding security returns. For example, if the only view PM has

is that, with a standard deviation of 1%, security A will outperform security B by 2%. This relative view can

be expressed as:

(
1 −1

)

 E(~̃r1|H,G)

E(~̃r2|H,G)


 = 2% + ε̃ where ε̃ ∼ N(0, (1%)2)

Alternatively, P can also be viewed as k strategies formulated based on the new information. In this

example, 2% can be considered as the expected return of the spread strategy


 1

−1


.

For the view estimation error vector ~̃ε in (3), the model makes the following normality assumption:

Assumption 4.2 (View Errors) The view error vector is normally distributed as follows:

~̃ε[k×1] ∼ N(~0[k×1],Ω[k×k]) (4)

where ~0 is a vector of zeros; and Ω is a diagonal variance matrix of view-estimation errors, which are

considered, for simplicity, as independent across views11.

Therefore, we have ~̃y|~̃r,H,G ∼ N(P~̃r|H,G ,Ω) (conditional on ~̃r). With our prior knowledge (1), plus

these views and our final conviction ~̃y|~̃r,H,G
belief→ ~̂q[k×1] (the ‘ultimate’ view mean estimation), the Bayes’

Rule can be utilised to leverage (3) for an update of the forecasts of ~̃r12. The closed-form results are:

Theorem 4.1 (Posterior Return Estimates) The posterior return vector is also normally distributed, i.e.,

~̃r|~̂q,H,G ∼ N( ~̂m, V̂), where the updated mean vector is:

~̂m =
[
(τΣ)−1 + PTΩ−1P

]−1
[
(τΣ)−1~̂π + PTΩ−1~̂q

]
(5)

and the updated variance-covariance matrix is:

V̂ =
[
(τΣ)−1 + PTΩ−1P

]−1
(6)

Proof. See Appendix A.¤

11This assumption comes as a convention of the classical linear regression model. This provides some simplicity. However, as far as

the model is concerned, this independence restriction is not necessary.
12Careful readers may have noted the relationship (3) can be re-arranged and considered as a linear system ~̃y|~̃r,H,G = P~̃r|H,G −

~̃ε for fitting ~̃r|H,G , with ~̂q and P as data. It seems that ~̃r|H,G can be estimated by the generalised least square (GLS) estimator(
PT

[n×k]
Ω−1

[k×k]
P[k×n]

)−1
PT

[n×k]
Ω−1

[k×k]
~̂q[k×1]. There are however two reasons why the following BL solution is more practical:

(1) In practice, it is often the case that we only have k (6 n) views. As such, the matrix PTΩ−1P is singular and therefore the GLS

estimation is not attainable. (2) Treating ~̂q and P as data is too optimistic - these are often just analysts’ opinions. The strong uncertainty

associated makes the Bayesian technique a more natural fit.
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The results are intuitive. Consider the 1-security, 1-view scenario:

m̂ =
π̂

τσ2 + q̂
ν2

1
τσ2 + 1

ν2

= $1π̂ + $2q̂ (7)

or

posterior estimate = confidence-weighted average of views; and

1

V̂
=

1
τσ2

+
1
ν2

(8)

or

posterior confidence = aggregate of confidence,

where σ is the security volatility; and ν is the view estimation error, and $1 =
1

τσ2
1

τσ2 + 1
ν2

and $2 =
1

ν2
1

τσ2 + 1
ν2

are the confidence weights.

If we consider ‘confidence’ as the inverse of variance (the ‘uncertainty’), Equation (8) basically blends

the PM’s confidences on the market equilibrium view, 1
τσ2 , and her own view, 1

ν2 , to obtain the posterior

estimation confidence as 1
τσ2 + 1

ν2 . This simple additive relationship comes as a result of the Bayes’s Rule.

The more confident the PM is on either view, the more confident she will be on her posterior (8).

Equation (7) simply combines the market equilibrium with the PM views through a confidence-weighted

average scheme. Again, this relationship is dictated by the Bayes’ Rule. It is easy to see that the more

confident the PM is about her view q̂, the more weight she should put on the view and therefore her posterior

forecasts should be adjusted more towards q̂. Consequently, the more she should tilt her new portfolio

towards reflecting the view; otherwise, the more she should rely on the market portfolio. In the extreme case

where her confidence on the views is minimal (or she has no views), Theorem 4.1 reduces to (1) and she

should do nothing to the equilibrium layer.

5 Implementation of the Black-Litterman Model

The BL framework in practice involves 4 steps:

Step 1: Data collection for the market-wide variables, portfolio-specific variables, and the PM views.

The following inputs are needed:

General economy-related input:

rf : the risk-free interest rate

Benchmark portfolio-related inputs: need to pick an index type of portfolio representing the

universe and the market portfolio, with which, the following are obtained:

~wM : the market portfolio weights

E(R̃M |G): the estimated total market portfolio return

10



Portfolio-related inputs:

τ : the risk multiplier. The value choice for this parameter should be considered

together with the view-uncertainty matrix Ω to achieve a desired balance for

shinkage

Σ: the estimated security return variance-covariance matrix

View-related inputs:

P: the view/strategy structure

~̂q: the view estimates, i.e., estimated security/strategy returns

Ω: the diagonal matrix containing the view variances

Step 2: Back-out the market view from the market portfolio based on the CAPM.

This basically requires the assessment of the CAPM-based excess returns ~̂π = E(R̃M |G)−rf

~wT
MΣ~wM

Σ~wM .

Step 3: Update the forecasts according to Theorem 4.1.

This involves substituting the results from Step 2, together with other inputs as specified in Step

1, into Theorem 4.1 to evaluate the posterior mean ~̂m and error matrix V̂.

Step 4: Optimise the allocation based on the posterior estimates to decide how to tilt from the market

portfolio.

The general mean-variance optimisation problem is:

max
~w
{~wT ~̂m− λ~wTV̂~w} (9)

Since most of the data items can be obtained from a market database, the PM just needs to pick an

appropriate risk-aversion parameter λ and concentrate on the view-related inputs: τ , P, ~̂q and Ω.

Figure 3 illustrates how the user should prepare inputs and how the model interacts with other compo-

nents in a typical equity analytical framework.

6 Practical Issue: Curse of Dimensionality

Note the posterior covariance matrix V̂[n×n] produced by the BL model is a fully populated numerical

matrix. When n > 1000, this ‘heavy’ matrix poses significant computational challenge to any quadratic

optimiser. In order to leverage the capacity of the optimiser, dimension reduction may be needed.

We recommend the following eigensystem analysis. Since V̂ is real, symmetric and positive-definite,

the following diagonalisation is guaranteed:

V̂ = E[n×n]D[n×n]ET
[n×n] (10)

where D is the diagonal matrix with the eigenvalues sorted from high to low; and E represents the loadings

matrix constructed by the eigenvectors corresponding to the sorted eigenvalues.
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Using the first p (p ¿ n) eigen components to approximate the original matrix and collect residuals, we

have:

V̂ = Θ[n×p]Λ[p×p]ΘT
[p×n] + R[n×n] (11)

where Λ is the diagonal matrix reduced from D by retaining the first p engenvalues; Θ is the loading matrix

reduced from E by retaining the first p eigenvectors; and R represents the residual matrix.

Impose the following treatment:

V̂ ≈ ΘΛΘT + ∆[n×n] (12)

where ∆ is the diagonal matrix obtained from R by setting all its off-diagonal elements to 0.

By such approximation, we attain a sparse representation of V̂ (i.e., Θ is just a [n × p] matrix, Λ is a

small [p× p] matrix, and ∆ is a diagonal matrix). This will significantly help the optimiser.

With the same choice of p, the approximation has exactly the same quality as a principal component

analysis (PCA) risk model. In risk modelling, the application of the eigensystem analysis is meant for noise

disposal. So generally, a very limited number l of principal components enter in ΘΛΘT. In our case,

however, the main purpose is to reduce the dimension to the level that the optimiser can handle. Therefore,

the choice of p is only subject to the optimiser capacity, which can easily handle several hundreds. We may

therefore set p to a number much larger than l (e.g., p = 100) to allow a very good approximation of the

posterior covariance matrix.

Alternatively, to avoid the dimension issue, one may also rank the securities according to the posterior

estimates and reduce the universe before optimisation.

7 Conclusion

This paper is an introduction to the Black-Litterman (BL) Model. Essential technical details, i.e., motivation,

intellectual roots, model formulation, and implementation guidance, are included with a view to enhancing

appreciation and enabling implementation of the model.

In addressing the lack-of-robustness issue of the mean-variance optimiser, the BL model aims to qualify

the view inputs rather than constraining the optimiser. In a market that demonstrates semi-strong market

efficiency, the market is smarter than any individual with only public information and conventional tech-

nique; therefore, one should simply rely on the market view, implied from the market portfolio by the

CAPM, the equilibrium pricer. Only when an investor has unique insight and superior forecasting technique

can she potentially outperform the market. To take advantage of these, the Bayes’ Rule, the fundamental Law

of belief updating, is employed for view processing (i.e., updating, translation, blending and shrinkage). It

is based on these three notions that the BL model is established.

Drawing on normality and linearity assumptions, this model admits analytical solution. Implementation

can be efficient. Since the outputs are in the form of explicit return forecasts together with a covariance

matrix, a standard mean-variance optimiser can produce allocation recommendation which is considered
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robust due to the shrinkage effect. This emancipates PMs from the job of view processing and portfolio

construction, enabling them to concentrate on alpha generation.

However, the user should be aware of some BL practical issues.

X Curse of dimensionality. The BL model spits out a fully populated numerical posterior matrix. In case

of a large universe, this poses significant burden to the optimiser. We resolve this issue by obtaining a

sparse representation of the matrix drawing on the principal component approximation.

¤ Confidence parameter setting. Setting τ and Ω is a classical issue inherited from the Bayesian frame-

work.

¤ View correlations. For simplicity, the BL model treats views as orthogonal. In reality, view correla-

tions may exist but hard to quantify. Is this a problem?

¤ Prior setting. In practice, there are a variety of investment styles. Equilibrium is an abstract concept;

and the market portfolio does not seem to be the starting point suitable for all strategies. How should

we choose an appropriate prior?

¤ Factor-based portfolio construction. How can we apply the BL technique to the popular Fama-French

factor ranking approach?

¤ Optimiser issues. The BL framework calls an optimiser for allocation purpose. Whereas the opti-

miser behaves as a ‘black box’. There are risk-aversion as well as intuition issues. Can we make the

framework more open and intuitive?

¤ Risk model quality. Risk model has errors itself. How can we economically use it in allocation?

¤ Linearity and normality assumptions. In the BL model, security returns are considered normal; and

the factor model, linear. How to apply this model to non-normal, non-linear markets?

In our forthcoming pieces, we aim to make the BL technique practical by resolving all these issues.
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Appendix A: Proof

Theorem 4.1 (Posterior Return Estimates) The posterior return vector is also normally distributed, i.e.,

~̃r|~̂q,H,G ∼ N( ~̂m, V̂), where the updated mean vector is:

~̂m =
[
(τΣ)−1 + PTΩ−1P

]−1
[
(τΣ)−1~̂π + PTΩ−1~̂q

]
(13)

and the updated variance-covariance matrix is:

V̂ =
[
(τΣ)−1 + PTΩ−1P

]−1
(14)

Proof. We first deal with a general case and then apply it into the BL context. In general, assume the

following linear regression relationship:

~̃
Y [k×1] = Q[k×n]

~̃
X [n×1] − ~̃u[k×1] (15)

where Q is a known/observable matrix; ~̃
Y is an observable vector; ~̃

X is unobservable and needs to be

estimated; and ~̃u is the error vector.

Also, assume the following Gaussian distributions for regression errors and the prior:

~̃u ∼ N(~0[k×1],Λ[k×k]); and (16)

~̃
X ∼ N(~µX[n×1],ΣX[n×n]) (17)

We therefore have, conditional on a realisation of ~̃
X ,

~̃
Y | ~̃X = Q ~̃

X − ~̃u ∼ N(Q ~̃
X,Λ) (18)

Distributions (17) and (18) are equivalent to:

f( ~̃
X) =

1
(2π)

n
2
|ΣX |− 1

2 e−
1
2 (

~̃
X−~µX)T(ΣX)−1(

~̃
X−~µX) (19)

where | · | gives the determinant of the matrix it applies to; and

f(~̃Y | ~̃X) =
1

(2π)
k
2
|Λ|− 1

2 e−
1
2 (

~̃
Y−Q

~̃
X)T(Λ)−1(

~̃
Y−Q

~̃
X), (20)

respectively.

We try to imply the probability distribution of ~̃
X | ~̃Y from the joint probability density function:

f( ~̃
X,

~̃
Y ) = f( ~̃

X)f(~̃Y | ~̃X)

=
1

(2π)
n+k

2

|Va|− 1
2 e−

1
2 ~αTV−1

a ~α (21)

where

~α[(n+k)×1] =




~̃
X − ~µX

~̃
Y −Q ~̃

X


 ; and (22)
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Va[(n+k)×(n+k)] =


 ΣX 0[n×k]

0[k×n] Λ[k×k]


 (23)

We hope, and based on the Bayes’ Rule, it is possible to express (21) in terms of f( ~̃
X|~̃Y )f(~̃Y ) since we

are interested in the posterior estimation of ~̃
X given ~̃

Y . This translates into a need to replace the dependence

of the mean estimates of ~̃
Y on ~̃

X (as in (18)) with a dependence of the mean estimates of ~̃
X on ~̃

Y . In other

words, through some transformation, we need to get rid of ~̃
X from the second error vector, but allow ~̃

Y to

enter the first error vector. To this end, construct the following matrix (Hamilton, 1994, Ch.12), which can

help us achieve this:

A[(n+k)×(n+k)]

=


 I[n×n] −[(ΣX)−1 + QTΛ−1Q]−1QTΛ−1

0[k×n] I[k×k]





 I[n×n] 0[n×k]

Q[k×n] I[k×k]




=


 [(ΣX)−1 + QTΛ−1Q]−1(ΣX)−1 −[(ΣX)−1 + QTΛ−1Q]−1QTΛ−1

Q[k×n] I[k×k]


 (24)

From the first equality, we may check |A| = 1 and it can be shown that the transformed error vector

becomes:

~α′ = A~α

=




~̃
X − [(ΣX)−1 + QTΛ−1Q]−1[(ΣX)−1~µX + QTΛ−1 ~̃

Y ]
~̃
Y −Q~µX




=




~̃
X − ~̃m(Q,ΣX ,Λ, ~µX ,

~̃
Y )

~̃
Y −Q~µX


 (25)

where

~̃m(Q,ΣX ,Λ, ~µX ,
~̃
Y ) = [(ΣX)−1 + QTΛ−1Q]−1[(ΣX)−1~µX + QTΛ−1 ~̃

Y ];

and the transformed error covariance matrix becomes:

V′
a = AVaAT

=


 [(ΣX)−1 + QTΛ−1Q]−1 0[n×k]

0[k×n] QTΣXQ + Λ




=


 V̂(Q,ΣX ,Λ) 0[n×k]

0[k×n] QTΣXQ + Λ


 (26)

where V̂(Q,ΣX ,Λ) = [(ΣX)−1 + QTΛ−1Q]−1.
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Through these transforms and noting |A−1| = |A| = 1, (21) can be rearranged as follows:

f( ~̃
X,

~̃
Y )

=
1

(2π)
n+k

2

|Va|− 1
2 e−

1
2 ~αTV−1

a ~α

=
1

(2π)
n+k

2

|(A−1)V′
a(A−1)T|− 1

2 e−
1
2 (A−1~α′)T[(A−1)V′a(A−1)T]−1(A−1~α′)

=
1

(2π)
n+k

2

|V′
a|−

1
2 e−

1
2 (~α′)T(V′a)−1(~α′) (27)

∴ f( ~̃
X,

~̃
Y )

=
1

(2π)
n+k

2

∣∣∣∣∣∣
V̂(·) 0[n×k]

0[k×n] QTΣXQ + Λ

∣∣∣∣∣∣

− 1
2

·

e

− 1
2




~̃
X − ~̃m(·)
~̃
Y −Q~µX




T


V̂−1(·) 0[n×k]

0[k×n] (QTΣXQ + Λ)−1







~̃
X − ~̃m(·)
~̃
Y −Q~µX




=
1

(2π)
n
2

∣∣∣V̂(·)
∣∣∣
− 1

2
e
− 1

2

(
~̃
X− ~̃m(·)

)T

V̂−1(·)
(

~̃
X− ~̃m(·)

)

·

1

(2π)
k
2

∣∣QTΣXQ + Λ
∣∣− 1

2 e
− 1

2

(
~̃
Y−Q~µX

)T

(QTΣXQ+Λ)−1
(

~̃
Y−Q~µX

)

(28)

where V̂(·) = V̂(Q,ΣX ,Λ); and ~̃m(·) = ~̃m(Q,ΣX ,Λ, ~µX ,
~̃
Y ).

From (28), we see:

~̃
X | ~̃Y ∼ N

(
~̃m(Q,ΣX ,Λ, ~µX ,

~̃
Y ), V̂(Q,ΣX ,Λ)

)
(29)

and

~̃
Y ∼ N (

Q~µX ,QTΣXQ + Λ
)

(30)

To assess ~̃
X | ~̃Y in (29), people use their best knowledge regarding Q, ΣX , Λ, ~µX , and ~̃

Y .

Recall in the model setting, our best knowledge based on the public information G leads to the following

prior belief:

~̃r|G ∼ N(~̂π, τΣ) (31)

After examining the private information H, we form the following updated views:

P~̃r|H,G = ~̃y|~̃r,H,G + ~̃ε (32)

where P is the view structure; ~̃y|~̃r,H,G is the view forecast vector; and suppose ~̃ε ∼ N(~0,Ω).

Therefore, conditional on a realisation of ~̃r|H,G :

~̃y|~̃r,H,G = P~̃r|H,G − ~̃ε ∼ N(P~̃r|H,G ,Ω) (33)
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Substituting ~̃r for ~̃
X and ~̃y for ~̃

Y into (29), we reach:

~̃r|~̃y,H,G

∼ N
(

~̃m(P, τΣ,Ω, ~̂π, ~̃y|~̃r,H,G), V̂(P, τΣ,Ω)
)

= N
(
[(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1~̂π + PTΩ−1~̃y|~̃r,H,G ], [(τΣ)−1 + PTΩ−1P]−1

)
(34)

Finally, using our eventual conviction about the mean of ~̃y|~̃r,H,G
belief→ ~̂q, we reach the following posterior

belief:

~̃r|~̂q,H,G

∼ N
(
[(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1~̂π + PTΩ−1~̂q], [(τΣ)−1 + PTΩ−1P]−1

)
(35)

This completes the proof. ¤
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