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Portfolio Optimization in Practice

Philippe Jorion

A major drawback with the
classical implementation of
mean-variance analysis is
that it completely ignores
the effect of measurement
error on optimal portfolio
allocations. A simple simu-
lation approach can pro-
vide insight into the distri-
bution of optimal portfolio
weights.

As an example, an ex post
optimal portfolio of U.S.
and foreign bonds is com-
pared with two bench-
marks—a world bond in-
dex and a U.S. bond index.
Taking sampling variability
into account, there is no
evidence that the optimal
porifolio outperformed the
world index over the
1978-88 period. The opti-
mal portfolio did, however,
perform significantly better
than the U.S. index.

These results suggest that,
over the time period stud-
ied, international diversifi-
cation into foreign bonds
has offered some benefits.
These benefits are best mea-
sured, bowever, by compar-
ing the performance of a
passive world index with
that of a U.S. index. An ex
post mean-variance analy-
sis systematically overstates
the possible gains from go-
ing international.

S

The concept of mean-variance
optimization, developed by
Markowitz, is the cornerstone of
modern finance theory and a
powerful tool for efficiently allo-
cating wealth to different invest-
ment alternatives. The technique
incorporates investor preferences
and expectations of return and
risk for all assets considered, as
well as diversification effects,
which reduce overall portfolio
risk.

Given the wide applicability of
the mean-variance paradigm, it
seems astonishing that invest-
ment practitioners do not put it to
use more often. One argument
often advanced by practitioners is
that the optimized portfolios lack
investment value in many applica-
tions. Instead of implementing
nonintuitive decisions dictated by
portfolio optimizations, invest-
ment managers simply disregard
the results, or turn away from the
entire approach. Michaud has
termed this puzzling situation the
“Markowitz optimization enig-
ma.”?

This article shows that part of the
problem lies with the measure-
ment of the necessary inputs. Typ-
ically, expected returns, risks and
correlations are measured from
historical data and fed into an
optimizer as if they were known
perfectly, when in fact these data
are measured with sometimes
substantial error. A major draw-
back of the classical implementa-
tion of mean-variance analysis is
that it does not recognize the
uncertainty inherent in the input
parameters, their estimation
risk.> Because of estimation risk,
the optimized portfolio can only
approximate a true optimal port-
folio. In the absence of informa-
tion about the quality of the ap-
proximation, it iS not surprising

that investment managers often
disregard the portfolio optimiza-
tion process.

This article presents a simple
simulation method that explic-
itly measures estimation error.
Recognizing that input parame-
ters are in some sense “fuzzy,” it
reports optimal portfolio weights
not only as point estimates, but as
point estimates with some mea-
sure of dispersion. This approach
should give managers a better
idea of whether an optimized
portfolio makes economic sense.
As an illustration, the method is
presented in the context of inter-
national portfolio choice.

The Classical Approach

Mean-variance analysis assumes
that investors prefer portfolios of
securities with high expected re-
turn in relation to risk. The imple-
mentation requires knowledge of
the expected returns of all assets
under consideration, their stan-
dard deviations and all pair-wise
correlation coefficients. With this
information, a set of efficient port-
folios can be calculated. These
are defined as the portfolios that
minimize risk for various levels of
expected returns, and as such,
represent the best investment al-
ternatives given the selected as-
sets.

Mean-variance optimization can
uniquely integrate portfolio ob-
jectives with policy constraints
and efficient use of information.
For instance, the optimization
problem can be formulated with
short-sales restrictions, transac-
tion costs, liquidity constraints
and turnover constraints. Its abil-
ity to incorporate various client
constraints makes mean-variance
optimization a remarkably flex-
ible tool.
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Table I Dollar Returns of World Bond Markets, 1978—1988*

Government Bonds Denominated in

UsS. Can. Ger. Jap. Brit. Dutch French World
Doll. Doll. Mark Yen Pound Guilder Franc Index
Avg. Ann.
Mean Return 9.75 10.03 981 15.42 12.57 10.48 10.09 1131
Std. Dev. 11.21 13.95 16.18 17.31 1831 15.15 14.13 10.94
Correlations

U.S. Doll. 1.000

Can. Doll. 0.737 1.000

Ger. Mark 0.358 0418 1.000

Jap. Yen 0.292 0.297 0.638 1.000

Brit. Pound 0.336 0.414 0.543 0.487 1.000

Dutch Guilder 0374 0.404 0.963 0.645 0.538 1.000

French Franc 0.308 0.369 0.880 0.678 0.489 0.891 1.000

* All data are expressed as per cent per annum. Returns are measured in dollars and include coupon payments. Monthly returns are annualized
by multiplying monthly mean returns by 12 and monthly standard deviations by the square root of 12.

Consider, as an illustration, the
problem of portfolio choice in
the context of a U.S. investor’s
optimal allocation of U.S. and for-
eign bonds. International portfo-
lio diversification was advocated
by Grubel as early as 1968, and it
is traditionally analyzed in a
mean-variance framework.* Table
I reports estimated means, stan-
dard deviations and correlations
for seven major government
bond markets over the period
January 1978 to December 1988.°
Returns are measured in dollars
and include coupon payments,
price appreciation and exchange
rate movements.

The benefits of international di-
versification are usually ex-
pressed in terms of return incre-
ments over domestic portfolios
with the same level of risk. For
example, one portfolio of US.
government bonds offers 9.75 per
cent; an international bond port-
folio with the same risk could
increase this return to about
12.35 per cent—an increase in
performance of 260 basis points.
This appears to be a substantial
gain.

The basic problem for mean-
variance analysis is to identify
those combinations of assets that

constitute efficient portfolios.
Given the difficulty of short sell-
ing in foreign markets, the effi-
cient portfolios are constrained tQ
have non-negative weights.

These are found by a quadratic
optimization program. Table II
presents the efficient portfolios
for a range of expected returns.

The shortcoming of this approach
is that it does not recognize,
much less quantify, the estimation
errors associated with the return
outputs. Optimal portfolios, by
construction, weight heavily
those assets that show the highest
returns. As Michaud indicates,

Table I Dollar Returns on Efficient Global Bond Portfolios With No Short Sales, 1978-1988

Proportion Invested in

Stand. US. Can. Ger. Jap. Brit. Dutch French
Avg. Ret. Dev. Doll. Doll. Mark Yen Pound Guilder Franc
10.12 9.95 0.64 0.00 0.00 0.03 0.04 0.00 0.29
10.65 10.03 0.61 0.00 0.00 0.12 0.05 0.00 0.21
11.18 10.25 0.59 0.00 0.00 0.21 0.07 0.00 0.13
11.71 10.61 0.56 0.00 0.00 0.30 0.08 0.00 0.06
12.24 11.10 0.51 0.00 0.00 0.39 0.09 0.00 0.00
12.77 11.77 0.42 0.00 0.00 0.49 0.09 0.00 0.00
13.30 12.62 0.33 0.00 0.00 0.58 0.09 0.00 0.00
13.83 13.63 0.23 0.00 0.00 0.67 0.09 0.00 0.00
14.36 14.75 0.14 0.00 0.00 0.77 0.09 0.00 0.00
14.89 15.96 0.05 0.00 0.00 0.86 0.09 0.00 0.00
15.42 1731 0.00 0.00 0.00 0.98 0.02 0.00 0.00
Max. Return/Risk:
11.96 10.82 0.55 0.00 0.00 0.34 0.09 0.00 0.02
World Index
1131 10.94 0.46 0.03 0.06 0.14 027 0.02 0.02
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Glossary

»Mean-Variance
Optimization:
A method for determining the
amount of funds to commit to
each security of a set of speci-
fied securities. It assumes that
higher portfolio mean returns
are preferred to less and that
less variance of returns (a
measure of risk) is preferred
to more. The required inputs
are the means, variances and
correlations for all specified
securities.

» Estimation Risk:
The possibility of errors in the
portfolio allocations due to
imprecision in the estimated
inputs to the portfolio optimi-
zation.

» Simulation:
A computer-intensive method
used to assess the properties
of a decision rule based on
statistical data. Repeated sam-
ples are obtained from a spec-
ified distribution, and the
techniques being investigated
are then applied to these arti-
ficial data sets.

» Quadratic Optimization
Program:
A special class of mathematical
programming problems hav-
ing a quadratic objective func-
tion and a linear constraint
set. In the portfolio selection
model, the objective is to min-
imize some measure of risk (a
quadratic function of the port-
folio weights) while maximiz-
ing return on the total invest-
ment.

» In-Sample (Out-of-
Sample):
The sample period over which
a model is estimated. A deci-
sion rule will prove useful if
the procedure is validated on
a different sample period (out-
of-sample), using parameters,
such as portfolio weights, pre-
viously estimated.

however, these are also the assets
most likely to contain positive
estimation error.” Optimization
thus systematically overweights
the assets with the highest estima-
tion errors, hence overstates the
true efficiency of the optimal
portfolio.

Because optimization and perfor-
mance measurement are con-
ducted over the same period (that
is, in-sample), the performance
of the optimized portfolios must
by construction improve on the
performance of any single asset;
at worst, the optimizer would se-
lect to remain in a single asset.
Moreover, the apparent increase
in efficiency offered by optimiza-
tion will generally grow with the
number of assets under consider-
ation. Because of estimation er-
ror, optimal weights may be very
unstable relative to small changes
in expected returns, and portfolio
performance may fall sharply in
periods outside the sample pe-
riod used for the optimization.®

The next problem is to select one
optimal portfolio from among the
efficient set. This portfolio can be
chosen as a function of the inves-
tor’s risk-return preferences. For
simplicity, assume the investor se-
lects the efficient portfolio that
maximizes the overall return-to-
risk ratio. This portfolio lies on a
line going through the origin and
tangent to the efficient frontier. In
Table II, the optimal portfolio is
invested 55 per cent in U.S.
bonds, 34 per cent in Japanese
bonds, 9 per cent in British bonds
(gilts) and 2 per cent in French
bonds. How confident, then, can a
portfolio manager be that he has
chosen the correct portfolio,
given that the input parameters
are imprecisely measured? Could
it be that the optimal weights are
not statistically different from the
U.S.-only index? If this is the case,
then there is no reliable evidence
that an internationally diversified
portfolio outperforms a domestic
portfolio. The framework pre-
sented below answers this ques-
tion.

A Simulation Approach
The distribution of an optimal
portfolio can be found by simula-
tion analysis. To understand the
concept behind the simulation
analysis, consider asset returns
observed over a given time pe-
riod. In a traditional statistical
framework, the data can be con-
sidered to be a random sample
drawn from a distribution of re-
turns with unknown means, vari-
ances and covariances. The num-
ber of observations in the sample
is finite, so another set, or ran-
dom sample, could be drawn
from the distribution, and it could
have estimated means and a vari-
ance-covariance matrix different
from that of the first random sam-
ple. This new set of input param-
eters would lead to different op-
timal portfolios than the first set,
even though both were generated
by the same underlying distribu-
tion.

The simulation proceeds as fol-
lows.

1. Compute the means and co-
variance matrix from the ac-
tual sample of historical re-
turns. Define T as the
sample size (number of
months, say) and N as the
number of assets. Perform
the optimization, given the
stated objective function and
investor constraints.

2. Assume that the estimates
from Step 1 are true values.
From a multivariate stan-
dard normal distribution
with these parameters, draw
one random sample of N
joint returns. This repre-
sents one month of simu-
lated returns. Sample again
until T months are gener-
ated.

3. Estimate from these simu-
lated returns a new set of
means and a new variance-
covariance matrix; perform
an optimization using these
inputs. The simulated opti-
mal portfolio provides one
observation in the distribu-
tion of the original optimal
portfolio.
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4. Repeat Steps 2 and 3 until
the distribution of the opti-
mal portfolio is approxi-
mated with enough preci-
sion.

For instance, 1000 iterations of
Steps 2 to 4 can be performed. A
distribution of weights can then
be tabulated from the results.
Clearly, this distribution is a valu-
able tool to portfolio managers,
because it permits visual inspec-
tion of the degree of “fuzziness”
of the original optimal investment
proportions. In addition, the per-
formance of the 1000 simulated
portfolios can be measured in
relation to the original data. In
terms of the original means and
covariance matrix, the simulated
portfolios have to be suboptimal.
The extent to which their perfor-
mance falls short of the original
optimized performance gives an
indication of the error due to
estimation risk.

Finally, statistically equivalent
portfolios can be generated by
selecting a cutoff probability lev-
el—say, 5 per cent—and discard-
ing 5 per cent of the portfolios,
those with the lowest return-to-
risk ratios. The remaining portfo-
lios would then be considered
statistically equivalent to the orig-
inal optimal portfolio.

This procedure is relatively sim-
ple to implement, because its ma-
jor building block consists of the
portfolio optimizer, which is al-
ready in place. The only addi-
tional requirement is a multivari-
ate normal random generator.’
The procedure is illustrated be-
low.

An Illustration

The simulation described above
was used to select a global bond
portfolio. Figure A presents the
classical efficient set, already de-
scribed in Table II, as well as the
original optimal portfolio that
maximizes the return-to-risk ratio.
Each additional square represents
the performance of a statistically
equivalent portfolio (excluding 5
per cent of portfolios with the
lowest return-to-risk ratios).
Given imprecise measurement of
the input parameters, the opti-
mizers could have selected any of
these portfolios instead of the
original optimal portfolio. The
dispersion in the performance of
these portfolios suggests that the
effect of estimation error is sub-
stantial.

The degree of estimation error
changes with the selection crite-
ria used to identify the optimal
portfolio. If the objective, for in-

stance, is solely to minimize risk,
then the minimum-variance (left-
most) portfolio should be se-
lected. Selection of this portfolio
relies only on variances and cova-
riances, not on measured ex-
pected returns. Because variances
and covariances are estimated
with much more precision than
expected returns, the portfolios
that are statistically equivalent to
the true minimum-variance port-
folio will be relatively close to it.
Dispersion will be much less than
that observed in Figure A.

Figure B displays the distribu-
tions of the optimal weights. The
histograms show the proportion
of times a given weight was ob-
served in the simulation. On the
horizontal axis, the possible val-
ues for the weights are classified
into different ranges (0, 0-0.05,
0.05-0.10 and so on up to 0.95—
1.00). Each vertical bar indicates
the relative number of occur-
rences within each range.°

The average values from the em-
pirical distributions seem to
match the point estimates of the
previous optimal weights (55 per
cent in dollar bonds, 34 per cent
in Japanese bonds, 9 per cent in
British bonds and 2 per cent in
French bonds). In addition, Fig-
ure B shows that the portfolio is
frequently invested in dollars, in
yen and, to some extent, in the
pound. Only rarely does the opti-
mal portfolio invest in the re-
maining currencies. A portfolio
that is statistically equivalent to
the original optimal portfolio, for
example, might be invested 60
per cent in dollar bonds, 30 per
cent in Japanese bonds and 10
per cent in British bonds. The
reported distribution of weights
allows the portfolio manager to
assess to what extent the optimal
portfolio differs from a reason-
able alternative.

More specifically, the portfolio
manager can formally test
whether the optimal portfolio is
statistically better than another
given portfolio. Table III reports
such tests. The first two rows re-
port the performance of two
benchmarks of interest—the
world index and the U.S. index.
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Figure B Frequency Distribution of Optimal Global Bond Portfolio Weights,

1978 — 1988
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On an annual basis, the ratio of
return-to-risk for these indexes
was 1.034 and 0.870, respectively.
As explained before, these num-
bers must by construction be
lower than the ratio of 1.105 ob-
tained for the original optimal
portfolio with no short sales.

To test the mean-variance effi-
ciency of a benchmark, a statistic
must be constructed that captures
the difference between the per-
formance of the optimal portfolio
72 and that of the benchmark. De-
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fine 6* and 6, as the return-to-risk
ratios of the optimal portfolio and
the benchmark, respectively. The
test statistic used here is:'!

F=k(0* — 6,)/1 + 8,?).

In comparing the observed value
of the statistic with its distribution
under the null hypothesis, abnor-
mally large values of F imply that
the performance of the optimal
portfolio far exceeds that of the
benchmark; consequently, it is

unlikely that the benchmark is
efficient.'?

This particular statistic was cho-
sen because its exact distribution
has been derived by Gibbons,
Ross and Shanken for the case
where negative weights are al-
lowed in the optimal portfolio.*?
With short-sale restrictions, how-
ever, the distribution of the statis-
tic must be derived from a simu-
lation under the null hypothesis
that the benchmark is truly mean-
variance efficient.

Table III reports an F-value of
0.209 for the world index. In the
simulation, in 786 instances out of
1000 the value of the statistic was
greater than 0.209. There is thus
no evidence that the observed
value of the statistic is abnormally
high, or that the world index is
inefficient. Loosely interpreted,
the weights of the world index
seem to fall within the distribu-
tion reported in Figure B.

The value of the test statistic for
the U.S. index is 0.656. This cor-
responds to an empirical mar-
ginal significance level of 9.5 per
cent. In other words, if the U.S.
index were truly efficient, in only
9.5 per cent of the cases would
the observed value be exceeded.
This suggests that an optimally
diversified portfolio of interna-
tional bonds indeed outperforms
an index of U.S. bonds on a risk-
return basis.

To investigate the impact of short
sales, Figure C displays the port-
folios obtained when some of the
optimal weights can be negative.
Note that the axes in Figure C
cover a wider scale than those in
Figure B. There thus seems to be
much more estimation error in
Figure C than in Figure B; the
dispersion of the portfolios is
much greater than before. Be-
cause fewer constraints are im-
posed on the weights, portfolio
positions are more often extreme
and more prone to estimation
error.

Table III also reports tests of effi-
ciency of the U.S. and world in-
dexes with short sales allowed.
With a marginal significance level
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Table III Dollar Returns of Portfolios and Tests of Efficiency, 1978-1988*

F-Test Statistic
(empirical p-value)

Mean/Stan.
Portfolio Mean Stan. Dev. Dev. World U.S.

World 1131 10.94 1.034

us. 9.75 11.21 0.870
Original Optimal with No 11.96 10.82 1.105 0.209 0.656
Short Sales (78.6%) (9.5%)
With Short Sales 12.35 10.76 1.151 0.353 0.803
(88.0%) (48.8%)

*The optimal portfolios maximize the in-sample return-to-risk ratio. The F statistic measures the difference between the performance of the
optimal portfolio and that of the benchmark. The empirical p-values report the proportion of times the value of the test statistic was exceeded from

a simulation under the null hypothesis.

of 48.8 per cent, there is no evi-
dence that the U.S. index is inef-
ficient. This contrasts with the re-
sults found when short sales are
not allowed and suggests that
there is more estimation error in
an optimal portfolio that allows
short sales.

The comparison between the
portfolios with and without short
sales underlines an important
point. Relaxing restrictions or
adding assets can only improve
the expected performance of effi-
cient portfolios. Because of the
interplay between estimation er-
ror and optimization, however,
adding assets or allowing short
sales may actually harm perfor-
mance, because it can lead to

optimal portfolios that are more
imprecisely measured.

Consider, for example, the case of
two highly correlated assets with
truly identical expected returns—
say, 10 per cent. In a finite sam-
ple, the average returns on these
assets will in general differ
slightly from each other. Assume
assets A and B have average re-
turns of 10.1 and 9.9 per cent,
respectively. With short-sale re-
strictions, the optimizer will se-
lect the asset with the highest
return; given that the two assets
are very similar, this choice can-
not be far from the correct
choice. In the absence of short-
sale restrictions, however, and
without transaction costs, the op-

Figure C  Statistically Equivalent Global Bond Portfolios with Short Sales,

1978 — 1988
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timizer will typically go long asset
A and short asset B in about the
same amount, because the data
indicate a quasi-arbitrage oppor-
tunity of 20 basis points with little
risk, this spread can involve very
large positions, such as 100 times
the initial investment. Such posi-
tions are a result of estimation
error combined with an unre-
stricted optimization.

Finally, a few limitations of this
framework should be mentioned.
The mean-variance approach im-
plicitly assumes that, for each
time period under consideration,
there is an unknown but stable
set of parameters. As the length of
the sample period increases,
these parameters are estimated
more accurately. In practice, un-
fortunately, very long horizons
are required for these tests to be
meaningful. Given that average
returns are much smaller than
volatilities, the tests generally re-
quire many years of monthly data.
With long horizons, however, ex-
pected returns may not be sta-
tionary. Hence there is a tradeoff
between precision in the optimal
weights and validity outside the
sample period. Nevertheless, the
approach presented here is use-
ful, if only to indicate how impre-
cise the optimal portfolio weights
can be.

Conclusions

The evidence presented here has
important implications for the in-
terpretation of mean-variance op-
timization results. Levy and Ler-
man, for instance, found that an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FINANCIAL ANALYSTS JOURNAL/JANUARY-FEBRUARY 1992

al



FINANCIAL ANALYSTS JOURNAL/JANUARY-FEBRUARY 1992

N

internationally diversified portfo-
lio containing both stocks and
bonds outperforms a portfolio of
stocks only.** Clearly, with more
assets to choose from, a more
widely diversified portfolio can-
not do worse, in-sample, than a
portfolio of stocks only. Along sim-
ilar lines, Madura and Reiff report a
dramatic increase in portfolio per-
formance when currency hedging
is allowed.”> Because currency
hedging is equivalent to allowing
short positions in Eurocurrency
deposits, the performance im-
provement is a direct result of
lifting restrictions on the menu of
assets. In these two studies, the
interesting question—one that re-
mains unanswered—is whether
the performance improvement is
statistically significant.'® The sim-
ulation approach presented here
provides a framework that can be
used to answer this question.'’
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