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ABSTRACT

Previous studies identify predetermined variables that predict stock and bond re-
turns through time. This paper shows that loadings on the same variables provide
significant cross-sectional explanatory power for stock portfolio returns. The load-
ings are significant given the three factors advocated by Fama and French ~1993!
and the four factors of Elton, Gruber, and Blake ~1995!. The explanatory power of
the loadings on lagged variables is robust to various portfolio grouping procedures
and other considerations. The results carry implications for risk analysis, perfor-
mance measurement, cost-of-capital calculations, and other applications.

EMPIRICAL ASSET PRICING is in a state of turmoil. The Capital Asset Pricing Model
~CAPM; see Sharpe ~1964! and Black ~1972!! has long served as the backbone
of academic finance and numerous important applications. However, studies
have identified empirical deficiencies in the CAPM, challenging its preemi-
nence. The most powerful challenges include market capitalization and re-
lated financial ratios that can predict the cross section of returns. For example,
the firm “size-effect” drew attention as a challenge to the CAPM. Ratios of stock
market price to earnings or the book value of equity are studied by Basu ~1977!,
Banz ~1981!, Chan, Hamao, and Lakonishok ~1991!, and Fama and French
~1992!, among others.

With the CAPM under such strenuous attack the field is hungry for a
replacement model.1 There are some natural heirs waiting in the wings, in-
cluding the intertemporal equilibrium models of Merton ~1973! and Breeden
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1 The CAPM does have its erstwhile saviors. For example, studies find that dynamic versions
of the CAPM with time-varying parameters and0or broader specifications for the market port-
folio perform better than traditional formulations of the model. Examples include Harvey ~1989!,
Ferson and Harvey ~1991!, Pannikkath ~1993!, Ferson and Korajczyk ~1995!, Jagannathan and
Wang ~1996!, and Carhart et al. ~1996!. See Ghysels ~1998! for a recent critique of conditional CAPMs.
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~1979! and the Arbitrage Pricing Theory of Ross ~1976!. However, empirical
implementations of these models have failed to produce much confidence in
their explanatory power ~e.g., Chan, Chen, and Hsieh ~1985!, Chen, Roll,
and Ross ~1986!, Shanken and Weinstein ~1990!, Hansen and Singleton ~1982!,
Connor and Korajczyk ~1988!, Lehmann and Modest ~1988!, and Roll ~1995!!.

One response to this hunger for a CAPM replacement has been to use the
returns of attribute-sorted portfolios of common stocks to represent the fac-
tors in a multibeta model. For example, Fama and French ~FF! ~1993, 1995,
1996! advocate a three-factor “model,” in which a market portfolio return is
joined by a portfolio long in high book-to-market stocks and short in low
book-to-market stocks ~HML! and a portfolio that is long in small ~i.e, low
market capitalization! firms and short in large firms ~SMB!. Fama and French
~1997! use this model for calculating the costs of equity capital for industry
portfolios ~see also Ibbotson Associates ~1998!!. Several recent studies use
the FF three-factor model as an empirical asset pricing model. However, the
model is controversial.

There is controversy over why the firm-specific attributes that are used to
form the FF factors should predict returns. Some argue that such variables
may be used to find securities that are systematically mispriced by the mar-
ket ~e.g., Graham and Dodd ~1934!, Lakonishok, Shleifer, and Vishny ~1994!,
Haugen and Baker ~1996!, and Daniel and Titman ~1997!!. Others argue
that the measures are proxies for exposure to underlying economic risk fac-
tors that are rationally priced in the market ~e.g., Fama and French ~1993,
1995, 1996!!. A third view is that the observed predictive relations are largely
the result of data snooping and various biases in the data ~e.g., Black ~1993!,
MacKinlay ~1995!, Breen and Korajczyk ~1994!, Kothari, Shanken, and Sloan
~1995!; see also Chan, Jegadeesh, and Lakonishok ~1995!!.

Berk ~1995! emphasizes that, because returns are related mechanically to
price by a present value relation, ratios that have price in the denominator
are related to returns by construction. If the numerator of such a ratio can
capture cross-sectional variation in the expected cash f lows, the ratio is likely
to provide a proxy for the cross section of expected returns. Ratios like the
book-to-market are therefore likely to be related to the cross section of stock
returns whether they are related to rationally priced economic risks or to
mispricing effects. Ferson, Sarkissian, and Simin ~1999! illustrate that spread
portfolios like SMB or HML can appear to explain the cross section of stock
returns even when the attributes used in the sort bear no relationship to
risk. Since the FF factors are not derived from a theoretical model, such
concerns about their interpretation are natural.

Given the prominence of the Fama–French three-factor model, we believe
that it is interesting to test its empirical performance as an asset pricing
model. The model was developed to explain unconditional mean ~average!
returns, and several studies explore its ability to explain average returns.2

2 Fama and French ~1993, 1996! find some nonzero alphas relative to the model, but inter-
pret them as economically insignificant. Daniel and Titman ~1997! find nonzero alphas using
the FF model against a “characteristics-based” alternative for average returns. Berk ~1997!

1326 The Journal of Finance



In this paper we test the FF model on conditional expected returns. Thus,
we do not focus on alternative “factors” that may provide a better model of
average returns. We concentrate instead on the ability of the model to cap-
ture common dynamic patterns in returns, modeled using a set of lagged,
economy-wide predictor variables. Previous studies, including Fama and
French ~1996!, explore the ability of the FF model to capture dynamic pat-
terns in returns, such as the momentum effect of Jegadeesh and Titman
~1993!. We focus on common dynamic patterns, captured by a standard set of
economy-wide instruments. These lagged instruments are used in numerous
previous studies, including some by Fama and French ~1988, 1989!.

We find that simple proxies for time variation in expected returns, based
on common lagged instruments, are also significant cross-sectional predic-
tors of returns. The ability of these variables to explain the cross section of
returns provides a powerful rejection of the FF model as a conditional asset
pricing model. In some cases loadings on the lagged variables drive out the
individual FF variables in cross-sectional regressions. The results are robust
to variations in the empirical methods and to a variety of portfolio grouping
procedures. We also reject the four-factor model advocated by Elton, Gruber,
and Blake ~1995!. Our results raise a caution f lag for researchers who would
use the FF and Elton et al. models to control for systematic patterns in risk
and expected return. Our results carry implications for risk analysis, per-
formance measurement, cost-of-capital calculations, and other applications.

Our paper is related most closely to studies that use the loadings of stock
portfolios on lagged economy-wide variables to explain the cross section of
expected returns. Jagannathan and Wang ~1996! and Jagannathan, Kubota,
and Takehara ~1998! show that asset covariances with labor income can be
a powerful cross-sectional predictor in the United States and Japan. We use
loadings on a larger set of lagged variables from the literature modeling
time-series predictability.3 The results show that size- and book-to-market-
related factors leave out important cross-sectional information about ex-
pected returns, even in portfolios formed to maximize the potential explanatory
power of these variables. The FF factors perform even worse in alternative
designs.

The paper is organized as follows. Section I details the empirical methods.
Here we propose a simple refinement of the standard Fama–MacBeth ~1973!
approach to cross-sectional regressions designed to improve its efficiency.

criticizes their sorting procedures and Davis, Fama, and French ~1998! question the out-of-
sample validity of their findings. Brennan, Chordia, and Subrahmanyam ~1998! document cross-
sectional attributes such as trading volume and exchange membership which also appear to
reject the FF three-factor model.

3 Conditional asset pricing studies use lagged instruments to model the time series of re-
turns, and then test cross-sectional restrictions on the conditional expected returns. An early
example of this approach is the so-called “latent variable” test, pioneered by Hansen and Ho-
drick ~1983! and Gibbons and Ferson ~1985!; see Ferson, Foerster, and Keim ~1993! for a review
of this literature. Conversely, a few studies have observed that ratios such as book-to-market,
originally identified as a cross-sectional predictor, have some time-series predictive power for
aggregate returns ~e.g., Pontiff and Schall ~1998! and Kothari and Shanken ~1997!!.

Conditioning Variables and the Cross Section of Stock Returns 1327



Section II describes the data. Our empirical results are presented in Sec-
tion III. Section IV explores some of the implications of the results. Sec-
tion V discusses the robustness of the results to alternative portfolio grouping
procedures, errors-in-variables, and other considerations. Some concluding
remarks are offered in the final section.

I. The Empirical Framework

A. Time-Series Tests

We start with the null hypothesis that the FF three-factor model identi-
fies the relevant risk in a linear return-generating process:

ri, t11 5 Et ~ri, t11! 1 bit
' $rp, t11 2 Et ~rp, t11!% 1 ei, t11, ~1!

Et ~ei, t11! 5 0,

Et ~ei, t11 rp, t11! 5 0,

where ri, t11 is the return for any stock or portfolio i, net of the return to a
one-month Treasury bill, and rp, t11 is a vector of excess returns on the risk
factor-mimicking portfolios. In the FF three-factor model, rp is a 3 3 1 vector
containing the market index excess return, HML, and SMB. The notation
Et~{! indicates the conditional expectation, given a common public informa-
tion set at time t. The factor model expresses the unanticipated return,
ri, t11 2 Et~ri, t11!, as a linear regression on the unanticipated parts of the
factors. The third line says that the coefficient vectors bit are the conditional
betas of the return ri on the factors. The error terms ei, t11 may be correlated
across assets.4

Equation ~1! captures the idea that rp, t11 are risk factors, but it says noth-
ing about the determination of expected returns. We assume the following
general model for the conditional expected returns and the betas:

Et ~ri, t11! 5 ait 1 bit
' Et ~rp, t11!,

bit 5 b0i 1 b1i
' Zt ,

ait 5 a0i 1 a1i
' Zt , ~2!

where Zt is an L 3 1 vector of mean zero information variables known at
time t and the parameters of the model are b0i , b1i , a0i , and a1i . In the FF
three-factor model, b0i is 3 3 1, b1i is 3 3 L, a1i is 1 3 L, and a0i is a scalar.

4 The covariance matrix of these errors would be restricted to have bounded eigenvalues as
the number of assets grows in the Arbitrage Pricing Theory, as shown by Chamberlain and
Rothschild ~1983!.
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Since we find that the lagged instruments have explanatory power beyond
the FF three-factor model, we want to be sure that they do not simply proxy
for time-variation in the FF factor betas. Given the evidence of time-varying
conditional betas for stock portfolio returns ~e.g., Ferson and Harvey ~1991!,
Ferson and Korajczyk ~1995!, Braun, Nelson, and Sunier ~1995!!, it makes
sense to allow for time-variation in the conditional betas. Thus, we allow the
betas in equation ~2! to depend on Zt . The betas are modeled as linear func-
tions of the predetermined instruments, following Shanken ~1990!, Ferson
and Schadt ~1996!, and other studies. In equation ~2!, the relation over time
between the lagged instruments and the betas for a given portfolio is as-
sumed to be a fixed linear function, as b1i is a fixed coefficient. However, we
examine models estimated on rolling sample windows, an approach that al-
lows b1i to vary over time, thus relaxing the assumption of a fixed linear
relation.

The hypothesis that the FF model explains expected returns says that the
“alpha” term, ait , in equation ~2! is zero ~i.e., the parameters a0i , a1i are
zero!. Assuming that alpha is zero is equivalent to assuming that the error
term ei, t11 in equation ~1! is not priced. Testing for a1i 5 0 in system ~2! asks
whether the variables in Zt can predict returns over and above their role as
linear instruments for the betas.

Equation ~2! follows empirical studies in which the alternative hypothesis
specifies an alpha that is linear in instrumental variables. Examples include
Fama and MacBeth ~1973!, who use the square of beta and a residual risk;
Rosenberg and Marathe ~1979!, who use firm-specific accounting measures;
and Daniel and Titman ~1997!, who use portfolio valuation ratios. Our ex-
ample provides a natural test of the FF model, where mispricing related to
the lagged, economy-wide instruments Zt is the alternative hypothesis.

The models for both the betas and the alphas, as given by equation ~2!, are
likely to be imperfect. The second and third equations of ~2! may have in-
dependent error terms, ref lecting possible misspecification of the alphas and
the betas.

Combining equations ~1! and ~2!, we derive the following econometric model:

rit11 5 ~a0i 1 a1i
' Zt ! 1 ~b0i 1 b1i

' Zt !rp, t11 1 ei, t11. ~3!

An advantage of regression ~3! is that it does not impose a functional form
for the expected premiums, Et~rpt11!. This allows us to address the question
of whether the lagged market indicators enter as proxies for time-variation
in the conditional betas for specific factors, without concern about getting
the right model for the expected returns on the factors.

B. Cross-Sectional Test Methodology

The cross-sectional regression approach of Fama and MacBeth ~1973! is
widely used to study asset pricing models and the cross-sectional structure
of asset returns. In this approach returns are regressed each month, cross-
sectionally, on a set of predetermined attributes of the firms or portfolios.
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The attributes may include estimates of “betas” from a prior time period, as
in Fama and MacBeth’s study of the CAPM, or they may include other vari-
ables such as the book-to-market ratio of the portfolio, as in Fama and French
~1992!.

A cross-sectional regression using stock returns as the dependent variable
is likely to have heteroskedastic and correlated errors, the latter due to the
substantial correlation across stock returns in a given month. The usual
regression standard errors are therefore not reliable. To test the hypothesis
that the expected coefficient is zero, Fama and MacBeth suggest forming a
t-ratio as the time series average of the monthly cross-sectional coefficients
divided by the standard error of the mean, where the latter is computed
from the time-series of the coefficient estimates. Shanken ~1992! provides
an analysis of the properties of this widely used approach. Jagannathan and
Wang ~1998! provide a recent asymptotic analysis, and Ahn and Gadarowski
~1998! extend the analysis under autocorrelation and heteroskedasticity, where
a single cross-sectional regression is used.

In Appendix A of this paper we show that the approach of Fama and Mac-
Beth, which weights the monthly cross-sectional regression coefficients equally
over time, can be easily improved. Under standard assumptions, the effi-
cient generalized least squares ~GLS! estimator of the pooled time-series
and cross-sectional regression can be written as a weighted average of the
time series of the Fama–MacBeth coefficients. The monthly estimates are
weighted in inverse proportion to their variances. A measure of the total
explanatory power of the system is also derived. We present results using
the efficient-weighted estimators, as well as using the more traditional
approach.

II. The Data

We obtain monthly returns on U.S. common stock portfolios for the period
from July 1963 to December 1994. The portfolios are formed similarly to
those of Fama and French ~1993!. Individual common stocks are placed into
five groups according to their prior equity market capitalization, and inde-
pendently on the basis of their ratios of book value to market value per
share. This 5 3 5 classification scheme results in a sample of 25 equity
portfolio returns. The appendix provides a more detailed description and
Table I presents summary statistics for the returns. The means and stan-
dard deviations are annualized.

Our lagged instrumental variables, Zt , follow from previous studies. These
are: ~1! the difference between the one-month lagged returns of a three-
month and a one-month Treasury bill ~“hb3”; see Campbell ~1987!, Harvey
~1989!, Ferson and Harvey ~1991!!; ~2! the dividend yield of the Standard
and Poors 500 ~S&P 500! index ~“div”; see Fama and French ~1988!!; ~3! the
spread between Moody’s Baa and Aaa corporate bond yields ~“junk”; see Keim
and Stambaugh ~1986! or Fama ~1990!!; ~4! the spread between a ten-year
and a one-year Treasury bond yield ~“term”; see Fama and French ~1989!!;
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and ~5!, the lagged value of a one-month Treasury bill yield ~“Tbill”; see
Fama and Schwert ~1977!, Ferson ~1989!, or Breen, Glosten, and Jagan-
nathan ~1989!!.5

Table II summarizes time-series regressions of the 25 portfolios on the
lagged instruments. The data are monthly for the July 1963 to December
1994 period. The regressions produce significant t-statistics for many of the
variables. The adjusted R-squares vary from about six to 14 percent across

5 Because of concerns about possible nonstationarity of the bill, we also examine results
where the one-month yield is stochastically detrended by subtracting the lagged, twelve-month
moving average.

Table I

Summary Statistics
Returns on 25 value-weighted portfolios formed on size ~as of June of the preceding year! and
the ratio of book value to market value ~as of the previous December! are summarized. Returns
are measured in excess of a one-month Treasury bill return. S1 refers to the lowest 20 percent
of market capitalization, S5 is the largest 20 percent, B1 refers to the lowest 20 percent of the
book0market ratios, and B5 is the largest 20 percent. Market is the return on the value-
weighted portfolio of all COMPUSTAT stocks used in forming the portfolios. HML is a high
book0market less a low book0market return and SMB is a small firm return less a large firm
return, as described in the text. The sample period is July 1963 through December 1994, which
provides 378 observations. The sample means are annualized by multiplying by 12 and the
sample standard deviations are multiplied by 12102. rj is the sample autocorrelation at lag j.

Portfolio Mean Std. Dev. r1 r2 r3 r4 r12 r24

S10B1 8.89 26.18 0.21 0.02 20.01 0.01 0.09 20.01
S10B2 14.18 23.01 0.20 0.00 20.01 20.00 0.10 20.02
S10B3 15.41 20.93 0.23 20.01 20.01 20.02 0.14 20.00
S10B4 17.20 19.90 0.21 20.01 20.01 20.02 0.16 20.01
S10B5 18.68 20.92 0.23 20.02 20.03 20.04 0.22 0.06
S20B1 11.60 24.35 0.16 20.02 20.02 20.03 0.02 20.06
S20B2 14.36 21.34 0.17 20.03 20.02 20.02 0.08 0.02
S20B3 16.53 19.47 0.16 20.04 20.04 20.02 0.09 20.04
S20B4 16.81 17.86 0.15 20.04 20.03 20.01 0.12 0.01
S20B5 18.55 20.34 0.16 20.07 20.07 20.04 0.15 0.03
S30B1 11.12 22.27 0.15 20.02 20.03 20.05 0.02 20.04
S30B2 13.80 18.86 0.16 20.03 20.00 20.04 0.05 20.01
S30B3 14.61 17.44 0.14 20.02 20.04 20.03 0.03 20.01
S30B4 16.11 16.35 0.13 20.04 20.02 20.04 0.09 0.06
S30B5 18.48 18.78 0.11 20.10 20.06 20.03 0.10 0.00
S40B1 11.89 20.03 0.11 20.02 20.02 20.02 0.01 20.03
S40B2 10.59 18.00 0.10 20.04 20.02 20.02 0.01 20.00
S40B3 13.36 17.01 0.07 20.05 20.02 20.06 0.02 0.00
S40B4 15.21 16.44 0.07 20.03 20.03 20.05 0.08 0.01
S40B5 18.01 19.36 0.06 20.04 20.02 20.02 0.06 20.00
S50B1 10.45 16.52 0.05 20.01 20.02 20.01 0.05 20.01
S50B2 10.49 15.78 0.03 20.06 0.00 20.00 20.00 20.02
S50B3 10.39 14.65 20.05 20.07 0.01 0.01 0.00 0.02
S50B4 12.40 14.35 20.07 0.01 0.05 20.08 0.04 0.01
S50B5 14.40 16.78 20.02 20.00 20.03 20.03 0.06 0.01
Market 11.26 15.12 0.04 20.04 20.01 20.01 0.03 20.01
SMB 3.23 9.91 0.18 0.06 20.02 0.04 0.22 0.05
HML 5.40 8.88 0.20 0.06 20.01 20.06 0.10 0.10
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Table II

In-Sample Predictability of Size and Book/Market Portfolios
Monthly excess returns are regressed on a set of lagged instrumental variables. The instru-
mental variables include “hb3,” the lagged difference between three-month and one-month T-bill
returns; “div,” the lagged S&P 500 dividend yield; “junk,” the lagged spread between Moody’s
Baa and Aaa yields; “term,” the lagged spread between the 10-year and three-month Treasury
yields. “Tbill” is the yield on the Treasury bill closest to 30 days to maturity from CRSP. The
sample is July 1963 to December 1994 and the number of observations is 378. Returns on 25
value-weighted portfolios formed on size and the ratio of book value to market value are mea-
sured in excess of the return on a 30-day Treasury bill. S1 refers to the lowest 20 percent of
market capitalization, S5 is the largest 20 percent, B1 refers to the lowest 20 percent of the
book0market ratios and B5 is the highest 20 percent. Market is the return on the value-
weighted portfolio of all COMPUSTAT stocks used in excess of the Ibbotson 30-day bill rate.
HML is a high book0market less a low book0market return and SMB is a small firm return less
a large firm return, as described in the text. Heteroskedasticity consistent t-ratios are on the
second line below the coefficients. “R2” is the coefficient of determination of the regression,
with the adjusted R-square shown on the second line. “Autocorr” is the first-order autocorre-
lation of the regression residual, with its t-statistic on the second line.

Variables

constant hb3 div junk term Tbill R2 Autocorr

S10B1 23.75 3.81 3.57 3.53 21.24 223.23 0.15 0.13
22.07 0.95 5.01 2.92 23.40 26.17 0.14 2.36

S10B2 23.21 2.93 2.83 3.33 20.81 218.27 0.14 0.12
22.00 0.89 4.26 3.11 22.40 25.06 0.13 2.20

S10B3 22.39 3.85 2.54 3.35 20.83 217.56 0.15 0.15
21.71 1.30 4.34 3.36 22.81 25.49 0.14 2.57

S10B4 21.50 4.63 2.24 3.13 20.80 216.51 0.15 0.13
21.13 1.73 3.99 3.31 22.77 25.30 0.14 2.26

S10B5 21.57 4.80 2.41 3.20 20.83 217.47 0.15 0.15
21.14 1.73 3.94 3.11 22.73 25.25 0.14 2.52

S20B1 23.05 4.11 2.98 2.86 20.85 219.19 0.13 0.09
21.74 1.06 4.22 2.47 22.48 25.36 0.12 1.73

S20B2 23.22 4.49 2.71 2.99 20.76 216.87 0.15 0.08
22.19 1.54 4.35 3.07 22.51 25.17 0.14 1.62

S20B3 21.70 5.68 1.95 2.70 20.58 213.69 0.13 0.08
21.26 2.09 3.36 2.94 22.05 24.39 0.12 1.46

S20B4 22.42 5.77 2.04 2.39 20.51 212.47 0.15 0.05
22.08 2.29 4.03 2.74 21.91 24.33 0.14 0.86

S20B5 21.67 6.56 2.15 2.46 20.68 214.35 0.13 0.09
21.24 2.35 3.57 2.50 22.32 24.41 0.12 1.56

S30B1 22.88 4.62 2.51 2.84 20.70 216.40 0.13 0.08
21.82 1.33 3.89 2.71 22.17 24.86 0.12 1.44

S30B2 22.50 5.89 2.15 2.79 20.60 214.23 0.16 0.07
21.94 2.20 3.86 3.14 22.15 24.79 0.15 1.30

S30B3 22.21 4.75 1.91 2.37 20.45 212.22 0.14 0.03
21.85 1.89 3.82 2.85 21.79 24.51 0.13 0.62

S30B4 20.63 5.64 1.61 2.10 20.58 212.10 0.13 0.03
20.57 2.48 3.48 2.69 22.38 24.64 0.12 0.56

S30B5 21.57 6.39 1.94 1.76 20.55 211.75 0.11 0.05
21.21 2.34 3.44 2.00 22.01 23.86 0.10 0.92
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the 25 portfolios. The residual autocorrelations are generally not large—
approximately 0.1 on average—but there are some statistically significant
autocorrelations for the small-firm portfolios. These no doubt ref lect the
nonsynchronous trading of these small stocks.6

The coefficients on the lagged variables show a great deal of spread across
the portfolios. This is important, as cross-sectional dispersion in the coeffi-
cients is necessary to provide explanatory power for the cross section of stock
returns.

Table II also reports regressions for the FF factor portfolios on the lagged
instruments. Two of the FF factors, MARKET and SMB, produce similar
R-squares to the 25 portfolios, but the HML portfolio is remarkable because
its adjusted R-square is zero. This foreshadows the result that the HML
portfolio does not help to explain time-varying conditional expected returns.

6 The autocorrelations are estimated by regressing the fitted residual on its lagged value by
OLS. A White ~1980! t-ratio is reported for the slope coefficient of this regression in Table II.

Table II—Continued

Variables

constant hb3 div junk term Tbill R2 Autocorr

S40B1 21.99 6.60 2.00 2.27 20.61 213.41 0.12 0.04
21.40 1.97 3.48 2.31 22.05 24.56 0.11 0.84

S40B2 22.67 5.33 1.97 2.29 20.46 212.30 0.14 0.01
22.07 1.91 3.66 2.62 21.70 24.33 0.13 0.13

S40B3 21.67 4.97 1.69 2.56 20.55 212.04 0.14 0.04
21.47 2.18 3.39 3.20 22.17 24.38 0.12 0.67

S40B4 20.66 5.08 1.38 2.07 20.48 210.54 0.11 0.02
20.58 2.06 2.97 2.52 21.97 24.04 0.10 0.46

S40B5 20.90 6.39 1.59 2.55 20.59 212.11 0.11 0.03
20.67 2.36 2.83 2.74 22.17 24.02 0.10 0.48

S50B1 20.67 4.90 1.00 1.85 20.30 28.33 0.08 0.00
20.58 1.54 1.93 2.14 21.24 23.32 0.07 0.03

S50B2 21.87 4.51 1.31 1.85 20.26 28.32 0.10 0.04
21.70 1.65 2.76 2.29 21.08 23.37 0.09 0.63

S50B3 21.74 4.46 1.24 1.06 20.12 26.66 0.09 20.11
21.72 1.66 2.81 1.37 20.53 22.91 0.07 21.71

S50B4 20.86 3.19 1.02 1.89 20.34 27.57 0.08 20.16
20.87 1.34 2.58 2.61 21.58 23.32 0.07 22.89

S50B5 0.14 5.34 0.78 2.32 20.41 28.46 0.08 20.09
0.12 2.13 1.64 2.94 21.61 23.19 0.07 21.66

Market 21.49 5.27 1.36 1.82 20.33 29.16 0.12 20.04
21.43 1.95 2.93 2.40 21.47 23.91 0.11 20.71

SMB 21.20 20.02 1.22 0.93 20.40 27.36 0.10 0.11
21.81 20.01 4.68 1.97 22.97 25.36 0.08 1.92

HML 1.07 0.45 20.46 20.25 0.08 2.50 0.02 0.20
1.77 0.28 21.84 20.48 0.52 1.70 0.00 3.10
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III. Empirical Evidence

A. Are the Betas Time-Varying?

As we show later, the lagged instruments track variation in expected re-
turns that is not captured by the FF three-factor model. However, the lagged
instruments may have explanatory power because they pick up time varia-
tion in the betas on the FF factors. This would imply that the FF model
should be implemented in a conditional form—that is, with time-varying
betas—but it would not indicate a fundamental shortcoming of the FF model.7

To examine the issue of time-varying betas, we report regressions in which
we allow the lagged instruments to enter the models through the conditional
betas. Table III presents the results of estimating the time-series regression
~3! for each of the 25 portfolio returns. Both one-factor models, where the
CRSP index is the market factor, and the FF three-factor model are exam-
ined; to save space we focus on the three-factor model in Table III.8 The table
reports the adjusted R-squares of the regressions and the right-tailed p-values
of F-tests for the hypothesis that the interaction terms between the factor-
mimicking portfolios and the lagged variables may be excluded from the
regressions. In the three-factor model, the F-tests for 11 of the 25 portfolios
produce p-values below 0.05 when the alphas are allowed to be time varying,
and 12 cases reject constant betas on the assumption that the alphas are
constant over time. A joint Bonferroni test strongly rejects the hypothesis
that the betas are constant over time, in either specification. The evidence of
Table III suggests that even if the FF factors are useful to control for “risk,”
it may be important to allow for the time-varying betas picked up by the
lagged instruments.

B. Time-Series Evidence on the Three-Factor Model

Table IV presents further results from the time-series model given in equa-
tion ~3!. For the first two columns we regress the 25 size and book0market
portfolio excess returns on a constant and the three FF factors. A t-test is
conducted for the hypothesis that the intercept is equal to zero, similar to
the results of Fama and French ~1993, 1996!, who found that the intercepts
were close to zero. The null hypothesis is equivalent to the statement that a
constant combination of the three FF factors is an unconditional ~fixed-
weight! minimum variance portfolio. This says that the three factors explain
the unconditional expected returns of the 25 portfolios and, therefore, all
fixed-weight portfolios formed from them. Like Fama and French ~1993,
1996!, we find little evidence against this hypothesis. Only four of 25 p-values

7 Subsequent to an earlier version of this paper, Fama and French ~1997! presented evidence
of time-varying betas in their model when applied to industry portfolios. Eckbo, Norli, and
Masulis ~1998! provide evidence of time-varying betas for firms issuing new equity and their
matching firms.

8 More details are available at http:00www.duke.edu0;charvey0Research0index.htm.
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Table III

Tests for Time-Varying Betas in a Three-Factor Model
Returns on 25 value-weighted portfolios are measured in excess of the return on a 30-day
Treasury bill and regressed on lagged instrumental variables, the excess returns of three-factor
portfolios, the three-factor returns each multiplied by the instrumental variables, and a con-
stant. The adjusted R-square of this regression is shown in the second column. A restricted
regression is estimated where the portfolio returns are regressed only on the three-factor
portfolios, the lagged instruments, and a constant. The p-value of an F-test comparing the two
R-squares is presented in the third column, as a test for time-varying betas. In the three right-
most columns a similar experiment is conducted ~constant alphas!, in which the lagged instru-
ments do not appear except as interaction terms. The three factor-portfolios are the market
return, a small minus large firm portfolio, and a high minus low book-to-market portfolio. The
lagged instrumental variables are described in Table II. The sample period is July 1963 through
December of 1994 and the number of observations is 378. S1 refers to the lowest 20 percent of
market capitalization, S5 is the largest 20 percent, B1 refers to the lowest 20 percent of the
book0market ratios, and B5 is the highest 20 percent. Bonferroni is the upper bound on the
p-value of a joint test across the portfolios. #,0.05 is the number of p-values less than 0.05.

Time-Varying Alphas Constant Alphas

Portfolio

R2

Constant
Betas

R2

Time-Varying
Betas

F-test
~ p-value!

R2

Constant
Betas

R2

Time-Varying
Betas

F-test
~ p-value!

S10B1 0.673 0.685 0.002 0.651 0.659 0.014
S10B2 0.693 0.703 0.004 0.681 0.689 0.020
S10B3 0.688 0.701 0.001 0.673 0.682 0.012
S10B4 0.647 0.663 0.001 0.633 0.645 0.007
S10B5 0.608 0.624 0.002 0.592 0.604 0.008

S20B1 0.783 0.787 0.037 0.774 0.777 0.125
S20B2 0.786 0.795 0.002 0.775 0.779 0.047
S20B3 0.758 0.769 0.001 0.756 0.763 0.009
S20B4 0.765 0.775 0.001 0.758 0.764 0.019
S20B5 0.706 0.721 0.000 0.702 0.711 0.007

S30B1 0.835 0.838 0.040 0.832 0.834 0.107
S30B2 0.845 0.850 0.006 0.838 0.839 0.210
S30B3 0.803 0.807 0.026 0.800 0.801 0.147
S30B4 0.795 0.800 0.018 0.791 0.794 0.057
S30B5 0.730 0.737 0.013 0.729 0.733 0.069

S40B1 0.879 0.878 0.730 0.878 0.877 0.736
S40B2 0.900 0.904 0.001 0.898 0.901 0.004
S40B3 0.861 0.862 0.126 0.859 0.859 0.272
S40B4 0.785 0.787 0.199 0.786 0.788 0.152
S40B5 0.751 0.761 0.002 0.751 0.761 0.003

S50B1 0.878 0.881 0.024 0.877 0.878 0.179
S50B2 0.911 0.913 0.010 0.911 0.914 0.008
S50B3 0.832 0.837 0.009 0.831 0.836 0.012
S50B4 0.772 0.773 0.356 0.774 0.775 0.231
S50B5 0.643 0.648 0.067 0.644 0.649 0.062

Bonferroni 0.001 0.001
# , 0.05 11 12
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Table IV

Time-Varying Alphas in a Three-Factor Model
The first column shows the average annualized intercept ~monthly figure 3 12, in percent! in a
regression of the portfolio excess return on a constant and three-factor portfolios. The second
column presents the right-tailed p-value of a heteroskedasticity consistent test of whether this
intercept is equal to zero. The third column reports the p-value of an F-test of whether the
intercept is constant in a model with constant betas. The fourth column reports p-values of an
F-test of the hypothesis that the intercept is constant in the model with time-varying betas. The
alternative for the constant alpha tests is to model the alphas as linear functions of the lagged
instrumental variables. The three-factor portfolios are the market return, a small minus large
firm portfolio, and a high minus low book0market portfolio. The lagged instrumental variables
are described in Table II. The sample is July 1963 to December 1994 and the number of ob-
servations is 378. Returns on 25 value-weighted portfolios formed on size and the ratio of book
value to market value are measured in excess of the return on a 30-day Treasury bill. S1 refers
to the lowest 20 percent of market capitalization, S5 is the largest 20 percent, B1 refers to the
lowest 20 percent of the book0market ratios, and B5 is the highest 20 percent. Bonferroni is the
upper bound on the p-value of a joint test across the portfolios. #,0.05 is the number of p-values
less than 0.05.

Portfolio

Annual Intercept
~Constant alpha,
constant betas!

Test Zero
Unconditional

Alpha

Test Constant
Alpha

~Constant betas!

Test Constant
Alpha

~Time-varying betas!

S10B1 26.036 0.000 0.000 0.000
S10B2 21.924 0.036 0.002 0.002
S10B3 20.880 0.237 0.000 0.000
S10B4 0.585 0.425 0.000 0.000
S10B5 0.170 0.815 0.000 0.000

S20B1 20.917 0.320 0.002 0.002
S20B2 20.465 0.551 0.000 0.001
S20B3 0.893 0.274 0.001 0.001
S20B4 0.723 0.303 0.042 0.050
S20B5 0.034 0.966 0.000 0.000

S30B1 21.100 0.239 0.000 0.000
S30B2 0.100 0.908 0.002 0.003
S30B3 20.347 0.683 0.002 0.003
S30B4 0.672 0.408 0.003 0.004
S30B5 0.960 0.294 0.001 0.001

S40B1 1.324 0.154 0.004 0.005
S40B2 22.322 0.011 0.000 0.000
S40B3 20.963 0.310 0.000 0.000
S40B4 20.040 0.969 0.000 0.000
S40B5 0.476 0.693 0.015 0.019

S50B1 2.295 0.002 0.000 0.000
S50B2 20.683 0.413 0.000 0.000
S50B3 21.240 0.222 0.000 0.000
S50B4 21.457 0.102 0.002 0.003
S50B5 21.678 0.196 0.079 0.092

Bonferroni — 0.000 0.000 0.000
# , 0.05 — 4 24 24
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~second column! are less than 0.05. The largest unconditional alpha is for
the small-firm0value portfolio and is just over six percent per year; the sec-
ond largest alpha is about 2.3 percent per year.

In the third column of Table IV we subject the FF model to a more strin-
gent test, with a specific alternative hypothesis. We regress the portfolio
excess returns over time on the three FF factors and the vector of lagged
instruments. The F-test for the hypothesis that the lagged variables may be
excluded from the regression is reported. This is implied by the hypothesis
that the FF three-factor model with constant betas can explain the dynamic
behavior of the conditional expected returns of the 25 portfolios, given the
lagged instruments. Now we find strong evidence against the model. All of
the p-values are less than 0.10, and all except one of the 25 are less than
0.05.9

Since we find evidence that conditional betas for the 25 portfolios on the
FF variables are time-varying, the instruments could enter the model through
the betas. In other words, by holding the betas fixed, the tests may be biased
against the FF model. In the fourth column of Table IV we allow the betas
to be time-varying. Each portfolio excess return is regressed on a constant
intercept, the lagged instruments, the FF factors, and the products of the FF
factors with the lagged instruments. This allows the FF factor betas to vary
as a linear function of the lagged instruments. The null hypothesis that the
alphas are constant ~the lagged instruments may be excluded from the model
of alpha! is tested with an F-test. Most of the p-values from this test are
again small. We thus obtain a strong rejection of the FF three-factor model,
even allowing for time-varying betas that depend on the instruments.

In summary, Fama and French ~1993! found that the regression intercepts
are close to zero for their three-factor model. However, conditional on the
lagged instruments the alphas are time-varying and thus not zero. This im-
plies that the FF three-factor model does not explain the conditional ex-
pected returns of these portfolios. Even a conditional version of the FF model,
with time-varying betas, can be rejected.

C. Economic Significance of the Conditional Alphas

Though the time-series tests reject the FF model, the lagged instruments
deliver only small increments to the already large time-series R-squares pro-
vided by the contemporaneous factors. We therefore conduct experiments to
assess the economic significance of the conditional alphas.

In a first experiment we use the conditional alphas in a step-ahead “trad-
ing strategy” to assess the economic significance of the departures from the
FF model. Each month we form portfolios using the conditional alphas of
equation ~3! estimated with trailing data. Each of the 25 size-sorted and
book-to-market-sorted portfolios is assigned an alpha rank, and an equally

9 Conditional pricing implies that the intercepts and the slopes on the lagged instruments
are zero; we test the weaker implication that only the slopes are zero. Including the intercept
would provide an even more powerful rejection of the FF model.
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weighted combination of the top seven and bottom seven alpha portfolios is
formed and held for one month. The procedure is repeated each month, pro-
ducing a time-series of trading strategy returns for high-alpha and low-
alpha portfolios. The models are estimated using either an expanding sample
or a rolling, 60-month sample. We find that the subsequent returns of the
high conditional alpha portfolios exceed those of the low conditional alpha
portfolios by economically significant amounts. With the expanding sample,
the difference in return is more than nine percent per year. With the rolling
sample, it is more than eight percent per year. The standard deviations of
the returns are slightly smaller in the high-alpha portfolios, which re-
inforces the economic significance of the conditional alphas.

In a second experiment we use the fitted values of the alphas, a0i 1 a1i
' Zt ,

from equation ~3! in monthly cross-sectional regressions for ri, t11, where
equation ~3! is estimated using trailing data only. The three-factor betas for
time t are also included in the regression. This means that the cross-
sectional regression coefficient on the fitted alphas is the return for the
month to a zero-net investment portfolio with three-factor betas equal to
zero and a fitted alpha, based on past data, of one percent per month. If the
FF model is correctly specified, the expected return of such a portfolio, and
therefore the expected time-series average of the coefficient, should be zero.

The results of the cross-sectional regressions using a number of specifi-
cations for the fitted alphas and the FF factor betas may be found on the
Internet. The results show that the fitted alphas are significant regressors
in models with the three FF betas, producing t-ratios between 4.3 and 7.8,
depending on the experiment. Including the fitted alphas in the regressions
does not have much effect on the coefficients on the FF betas because the
fitted alphas are constructed to be orthogonal to the FF betas in the cross
section.10 Thus, the regressions further illustrate the economic significance
of the conditional alphas.

D. The Cross Section of Expected Stock Returns Revisited

Fama and French ~1992! use cross-sectional regressions of stock portfolio
returns on size and book-to-market to attack the CAPM. In this section we
use a similar approach to examine the FF three-factor model in more detail.
Consider the cross-sectional regression

rit11 5 go, t11 1 gt11
' bit 1 g4, t11 dit

' Zt 1 eit11; i 5 1, . . . , N, ~5!

10 This occurs because the factors are simple combinations of the test assets, which implies
that a weighted average of the alphas must be zero. Consider the special case of a stacked
regression model: r 5 a 1 rp b 1 u, where rp 5 rW is a combination of the test assets with weight
given by the n 3 k matrix, W. Using the definition b 5 ~W 'VW !21W 'V, where V is the covari-
ance matrix of r, it is easy to show that a 'V 21b ' 5 0.
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where go, t11 is the intercept and gt11 5 ~g1, t11,g2, t11,g3, t11!' and g4, t11 are
the slope coefficients. The bit are the betas on the three FF variables, formed
using information up to time t. The term dit

' Zt denotes the fitted conditional
expected return, formed by regressing the return i on the lagged variables Z,
using data up to date t, where dit is the time-series regression coefficient.11

We use fitit as a shorthand for this variable. The dating convention thus
indicates when a coefficient or variable would be public information. The
hypothesis that the FF factor betas explain the cross section of expected
returns implies that the coefficient g4, t11 is zero. The alternative hypothesis
is that the FF variables do not explain the conditional expected returns, as
captured by the lagged instruments.

Jagannathan and Wang ~1998! study the asymptotic properties of cross-
sectional regression models, allowing for heteroskedasticity in returns. They
show that if an asset pricing model is misspecified, the coefficients are bi-
ased and, in some cases, the t-ratios do not conform to a limiting t distribu-
tion. Thus, the coefficients cannot be used to select significant factors. They
emphasize, however, that including additional cross-sectional predictors in
the model, the t-ratios for those variables provide a valid test of the null
model. Their analysis justifies our use of the t-ratio on g4 as a test of the FF
three-factor model.

Table V summarizes several versions of the cross-sectional regressions. The
time-series averages of the cross-sectional regression coefficients are shown
along with their Fama–MacBeth t-ratios. We examine one-factor models, where
the CRSP value-weighted index is the factor, and three-factor models using the
FF variables. Table V concentrates on the FF three-factor model.12 We esti-
mate the betas using either an expanding sample or a rolling, 60-month prior
estimation period. When conditional betas are used ~Panels C, D, G, and H!
they are assumed to be linear functions of the lagged instruments. We esti-
mate each cross-sectional regression model with and without the fitted ex-
pected returns in the regression, and we compare the results.

The FF model implies that the intercepts of the cross-sectional regressions
should be zero. Table V shows that when the three-factor betas are the only
regressors the intercept has a t-ratio of 0.80 using the expanding sample,
and as large as 1.9 in other cases. The larger values may be interpreted as
weak evidence against the FF three-factor model, similarly to Fama and
French ~1993, 1996!.

When the fitted expected returns using the lagged market instruments
~the “fit”! are included in the cross-sectional regressions the results are dra-
matically different. The t-ratios of the fit are in excess of 5.7 in all of the

11 The time-series regression is rit 5 dit
' Zt21 1 vit, t 5 1, . . . , t, so dit is estimated using data

up to time t for returns and up to time t 2 1 for the lagged instruments.
12 Results for the one-factor models are available on the Internet. Consistent with Fama and

French ~1992!, there is no significant relation between the returns on these portfolios and the
market index betas. However, the fitted expected returns using the lagged market instruments
are highly significant, with t-ratios in excess of seven.
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Table V

Evidence on the Cross Section of Stock Returns
The average coefficients from monthly cross-sectional regressions are expressed as percentage
per month. The dependent variables are value-weighted portfolio returns at time t, formed on
size and the ratio of book-to-market, measured in excess of the return on a 30-day Treasury bill.
The regressors are a constant, the betas on the three FF factors, and a fitted conditional ex-
pected return estimated with data up to time t 2 1. The betas are from a time-series regression
of the portfolio excess returns on the excess factor returns. The three FF factors are the market
return ~mkt!, a small minus large market capitalization portfolio ~smb!, and a high minus a low
book-to-market portfolio ~hml!. The fitted expected return is from a time-series regression of
the portfolio return on lagged instrumental variables, using data to time t 2 1. The instrumen-
tal variables used to form the fitted expected return ~ fit) are described in Table II. The sample
is July 1963 to December 1994 and the number of time-series observations is 378. The number
of cross-sectional regressions is 377. For the first 60 months we use the in-sample betas. After
observation 60, the sample for estimating the beta grows by one observation in Panel A. In
Panel B, the regressions use a 60-month rolling window to estimate the betas ~the time-series
predicted returns use an expanding sample!. t-statistics are reported under the average coef-
ficients. g0 is the average intercept.

g0 g1~mkt! g2~smb! g3~hml! g4~fit!

Panel A. With Expanding Sample Betas

0.230 0.190 0.198 0.495 —
0.804 0.586 1.354 3.648 —
0.502 — — — 0.510
2.036 — — — 6.030
0.041 0.322 0.073 0.232 0.466
0.137 0.953 0.496 1.588 7.797

Panel B. With 60-Period Rolling Sample Betas

0.483 20.049 0.208 0.473 —
1.865 20.167 1.426 3.563 —
0.502 — — — 0.510
2.036 — — — 6.030
0.227 0.153 0.092 0.237 0.445
0.803 0.491 0.631 1.715 7.537

Panel C. With Expanding Sample Conditional Betas

0.217 0.235 0.195 0.416 —
0.872 0.974 1.426 3.473 —
0.502 — — — 0.510
2.036 — — — 6.030
0.201 0.341 0.173 0.176 0.387
0.785 1.392 1.284 1.411 6.659

Panel D. With 60-Period Rolling Sample Conditional Betas

0.190 0.276 0.195 0.360 —
0.868 1.548 1.508 3.392 —
0.502 — — — 0.510
2.036 — — — 6.030
0.254 0.211 0.160 0.205 0.355
1.138 1.243 1.293 2.041 6.250
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panels. The FF three-factor model thus fails miserably when confronted with
this alternative hypothesis. Although the magnitudes of the coefficients are
difficult to interpret if the model is misspecified ~Jagannathan and Wang
~1998!!, some of the patterns are interesting. With the fit in the regressions
the coefficients on HML are consistently smaller, and the t-ratios become
individually insignificant in many of the cases. The average coefficient on
the market beta, g1~mkt!, is usually larger in the presence of the fit. The
intercepts are typically smaller and insignificant when the fit is included.

The coefficients and t-ratios in Table V show that the FF three-factor model
is rejected. The fit thus provides a powerful alternative that allows us to
detect patterns in the cross section of the conditional expected returns that
the FF model does not capture. The rejection can also be turned around. If
the fit delivered a perfect proxy for Et~ri, t11!, then in the cross section, the

Table V—Continued

g0 g1~mkt! g2~smb! g3~hml! g4~fit!

Panel E. WLS with Expanding Sample Betas

0.236 0.186 0.229 0.466 —
0.826 0.555 1.561 3.482 —
0.467 — — — 0.523
1.859 — — — 6.107
0.066 0.301 0.106 0.246 0.435
0.219 0.880 0.718 1.714 7.438

Panel F. WLS with 60-Period Rolling Sample Betas

0.508 20.070 0.242 0.440 —
1.929 20.232 1.660 3.297 —
0.497 — — — 0.505
1.986 — — — 5.834
0.350 0.036 0.123 0.250 0.391
1.251 0.117 0.852 1.815 6.943

Panel G. WLS with Expanding Sample Conditional Betas

0.227 0.216 0.236 0.403 —
0.923 0.870 1.721 3.413 —
0.463 — — — 0.527
1.844 — — — 6.164
0.212 0.319 0.202 0.204 0.349
0.830 1.278 1.497 1.673 6.307

Panel H. WLS with 60-Period Rolling Sample Conditional Betas

0.208 0.246 0.247 0.345 —
0.960 1.360 1.893 3.220 —
0.502 — — — 0.511
1.992 — — — 5.866
0.314 0.158 0.196 0.211 0.324
1.430 0.924 1.587 2.105 5.730
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coefficients on bit should have a mean of zero and the coefficient on the fit
should be 1.0. The tests therefore reject the hypothesis that the fit com-
pletely captures expected returns. Of course, since the lagged instruments
represent only a subset of publicly available information, and the regres-
sions that determine the fit have estimation error, we do not expect the fit to
provide a perfect proxy for expected returns. We discuss errors-in-variables
in Section 5.A below.

The t-ratios in Table V allow a convenient economic interpretation of the
rejections as they are proportional to a portfolio’s Sharpe ratio ~average ex-
cess return divided by standard deviation!. For example, with a sample of
378 months and a t-ratio for the HML premium of 3.65 in Panel A, the
Sharpe ratio of the HML premium is 3.650%378 5 0.188. MacKinlay ~1995!
argues that such a high Sharpe ratio for monthly stock returns is implau-
sible. With the fit in the regression, the Sharpe ratio for the HML premium
is 1.580%378 5 0.081, and that for the premium, g4~ fit!, is 7.80%378 5 0.401.
Applying MacKinlay’s interpretation here suggests that if we accept the FF
three-factor as a model for both expected returns and risk control, then the
portfolio strategy implied by the fit is an attractive, near-arbitrage oppor-
tunity. Alternatively, we interpret the evidence as a striking rejection of the
FF three-factor model.

E. Are These “Useless” Factors?

Although the results of the cross-sectional regressions are striking, they
should be interpreted with some caution. Kan and Zhang ~1999! provide an
analysis of bias in cross-sectional regressions when there is a “useless” fac-
tor that has a true beta in time series equal to zero. They show that such a
useless factor beta may appear with a large t-ratio in a cross-sectional re-
gression, as the design matrix of the regression is ill-conditioned. Jagan-
nathan and Wang ~1998! provide an asymptotic analysis that includes a
useless factor as a special case, and Ahn and Gadarowski ~1998! extend their
results with more general assumptions about heteroskedasticity and auto-
correlation. Given that the lagged instruments have relatively small R-squares
in the time-series, it is possible that our results ref lect a bias as described
by these studies.

Kan and Zhang ~1999! suggest using the stability of cross-sectional coef-
ficients in subperiods as a diagnostic tool to indicate the useless factor bias,
as the cross-sectional coefficients should be unstable in the presence of a
useless factor. Our rolling estimators provide an opportunity to look for in-
stability. We examine time-series plots of our cross-sectional coefficients. Fig-
ure 1 shows an example. The cross-sectional regression coefficients on the
fit are graphed over time. Superimposed on the graph are the monthly co-
efficients for the betas on the market index, a factor that is as far from
useless in the time-series regressions as we can imagine. Since the units of
the regressors—market beta versus fit—are different, we multiply the coef-
ficient on the fit by the ratio of the time series means of the coefficient
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values. Scaled to the same means, the volatilities of the two time series are
very different. The coefficients on the fit appear much more stable than
those for the market beta. Indeed, to see the variation in both series on the
same graph we use different scales: The fit coefficient is shown at a smaller
scale than the market beta coefficient. Given this striking evidence, we do
not believe that a useless factor story explains our results.

F. Results Using Efficient-Weighted Fama–MacBeth Regressions

Table VI summarizes cross-sectional regression results using the efficient-
weighted version of the Fama–MacBeth coefficients, as derived in Appendix
A. These essentially weight the coefficient each month in inverse proportion
to the variance of the estimator from that month. A t-ratio for each coeffi-
cient is constructed similarly to Fama and MacBeth ~1973!, but the months
are weighted to ref lect the weighted estimator.

The results in Table VI confirm the finding that the fit allows us to reject
the FF model in cross-sectional regressions. In three of the four cases, the fit
t-ratio is significant given the FF factor loadings. Although the magnitudes
should be interpreted with caution, as explained before, many of the pat-
terns in the regression results are similar to those of Table V. Only in one of
four cases does the coefficient on the HML loading produce a significant
t-ratio when the fit is in the regression, and in no case is SMB significant.
However, unlike the previous tables, the weighted average slope coefficient
for HML is larger when the fit is in the regression.

Figure 1. Comparison of cross-sectional slopes. The CAPM slope ~left scale! shows the
time series of monthly cross-sectional regression coefficients of size and book0market portfolio
returns on their stock market betas. The fit slope ~right scale! shows the time series of monthly
cross-sectional regression coefficients of the portfolio returns on their fit values, scaled to have
the same sample mean as the CAPM slopes. The figure illustrates that the fit slopes appear to
be more stable over time than the CAPM slopes.
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Table VI

Efficient-Weighted Fama–MacBeth Regression Results
The efficient weighted average of the coefficients from monthly cross-sectional regressions are
expressed as percentage per month, as derived in Appendix A. The dependent variables at time
t are 25 value-weighted portfolio returns formed on size and the ratio of book-to-market, and
measured in excess of the return on a 30-day Treasury bill. The regressors are a constant, the
betas on the three FF factors, and a fitted conditional expected return estimated with data up
to time t 2 1. The three FF factors are the market return ~mkt!, a small minus large market
capitalization portfolio ~smb!, and a high minus a low book-to-market portfolio ~hml!. The betas
are from a time-series regression of the portfolio excess returns on the excess factor returns
using data to time t 2 1. The fitted expected returns ~ fit! are from time-series regressions of
the returns on lagged instrumental variables, using data to time t 2 1. The lagged instrumental
variables are described in Table II. The sample is July 1963 to December 1994 and the number
of time-series observations is 378. The number of cross-sectional regressions is 377. For the
first 60 months we use the in-sample betas. After observation 60, the sample for estimating the
beta grows by one observation in Panel A. In Panel B, the regressions use a 60-month rolling
window to estimate the betas ~the time-series predicted returns use an expanding sample!.
t-statistics are reported under the average coefficients. g0 is the weighted-average intercept.
The overall R2 is derived in Appendix A.

g0 g1~mkt! g2~smb! g3~hml! g4~ fit) Overall R2

Panel A. With Expanding Sample Betas

20.073 0.453 0.796 0.275 — 0.0020
20.123 0.601 1.990 1.442 — —

0.410 — — — 1.912 0.0938
1.706 — — — 3.015 —
0.282 0.546 0.247 0.320 0.609 0.0946
0.480 0.734 0.627 1.616 0.275 —

Panel B. With 60-Period Rolling Sample Betas

0.051 20.527 0.999 0.047 — 0.0025
0.052 20.478 1.789 0.180 — —
0.208 — — — 1.333 0.0938
0.822 — — — 2.022 —

20.154 20.897 0.504 0.171 6.032 0.0941
20.171 20.889 0.988 0.627 1.405 —

Panel C. With Expanding Sample Conditional Betas

20.054 0.231 20.341 20.466 — 0.0042
20.121 0.541 21.032 21.700 — —

0.350 — — — 1.806 0.0938
1.472 — — — 2.960 —

20.092 0.048 20.409 20.650 3.841 0.0950
20.215 0.113 21.231 22.187 2.683 —

Panel D. With 60-Period Rolling Sample Conditional Betas

0.328 0.308 0.690 20.019 — 0.0018
0.762 0.831 0.949 20.069 — —
0.207 — — — 1.400 0.0938
0.815 — — — 2.095 —
0.147 0.064 0.393 20.079 2.321 0.0944
0.426 0.178 0.760 20.304 1.975 —
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We observed earlier that the increments to time-series regression R-squares,
for the portfolio returns regressed on the contemporaneous factors, are small
when the lagged instruments are included in the regressions. Table VI in-
cludes estimates of overall R-squares, as derived in Appendix A. The overall
R-squares combine the time-series and cross-sectional dimensions of model
explanatory power, where each return-month is weighted inversely to its
variance. For the FF model, the R-squares vary from 0.2 to 0.42 percent
across the experiments. These figures are much lower than the cross-
sectional regression R-squares reported in previous studies, ref lecting the
relatively poor fit of the FF three-factor betas to the time-series of the ex-
pected returns. ~Recall that the explanatory variables are predetermined
betas, not the contemporaneous factor values.! When the predetermined value
of the fit is in the regressions, the R-squares range from 9.3 percent to 9.5
percent. These figures are similar to those obtained from time-series regres-
sions of returns on the lagged instruments themselves. The comparison shows
that the fit provides a dramatic improvement in the overall explanatory
power, illustrating that the FF three-factor model is strongly rejected.

G. Digging deeper

Given that the time-series instruments deliver such a powerful cross-
sectional predictor of stock returns, it is interesting to know which of the
lagged variables are relatively important in the cross-sectional regressions.
We repeat the cross-sectional analysis of the preceding section, replacing the
fitted expected returns with the estimated regression coefficient, d, on a
single lagged instrument, and we study the instruments one at a time in the
presence of the FF three-factor betas. The results are on the Internet.

The cross-sectional coefficients on the individual d’s show a number of
interesting patterns. No individual coefficient drives the cross-sectional ex-
planatory power. However, the coefficients for the lagged excess return of
the three-month bill, dHB3, and for the lagged one-month yield dTbill , are
consistently strongly significant cross-sectional predictors. For example, the
t-ratios for the slope coefficient for dHB3 are between 2.6 and 3.8 in all of the
48 different specifications we examine. For dTbill the t-ratios are all between
2.1 and 4.1. This suggests that the FF three-factor model leaves out impor-
tant patterns in expected stock returns that are related to cross-sectional
differences in the portfolios’ sensitivity to lagged interest rates.

H. Tests on a Four-Factor Model

The idea that the FF factor model may leave out important interest rate
exposures is ref lected in the work of Elton, Gruber, and Blake ~EGB, 1995!,
who advocate a four-factor model. The first three factors are similar to those
of the FF model, and the fourth factor is a low-grade bond portfolio excess
return. We repeat the battery of tests described above using the EGB four-
factor model as the null hypothesis, with data over the February 1979 to
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December 1993 period, a total of 180 monthly observations.13 The main re-
sults are summarized here, and are available by request or on the internet.

When we test for time-varying betas of the size- and book0market-sorted
portfolios, as in Table III, we find evidence of time-varying betas in the
four-factor model. The F-tests produce 10 out of 25 p-values less than 0.05,
and the Bonferroni inequality implies that the p-value of a joint test across
the 25 portfolios is less than 0.001. There is also evidence of time-varying
alphas in this model, similar to Table IV. As a prelude to the cross-sectional
regressions we examine the average cross-sectional correlations of the four-
factor beta estimates and we find no strong correlations. This suggests that
the ~x 'x! matrix in the cross-sectional regressions should not be ill-
conditioned due to colinearity of the regressors.

The cross-sectional regression analysis, similarly to Table V, reveals some
interesting results for the four-factor model. In the presence of the bond-
return factor, the betas on the EGB market, size, and value-growth factors are
seldom individually significant in the cross-sectional regressions. By itself, the
fitted expected return produces t-ratios between 3.8 and 5.8 in experiments cor-
responding to the eight panels of Table V. When the four-factor betas and the
fit are in the regression, the t-ratios for the fit are between 3.3 and 5.6. No four-
factor beta is individually significant in the presence of the fit.

In summary, the results for the EGB four-factor model are similar to the
results for the FF three-factor model. Conditional on the lagged instruments
the alphas in either model are time-varying and thus not zero. This implies
that the models do not explain the conditional expected returns of these
portfolios. Even conditional versions of the models, with time-varying betas,
do not capture the dynamic patterns of the expected returns. The lagged
instruments do not explain much the time-series variance of the returns.
However, in cross-sectional regressions the fit is a relatively powerful re-
gressor. Its Fama–MacBeth t-ratios are large even with the factor betas in
the regression.

IV. Interpreting the Evidence

The preceding evidence shows that variables used to proxy for expected
returns over time in the conditional asset pricing literature also provide a
potent challenge for the Fama–French and Elton–Gruber–Blake variables in
explaining the cross-section of conditional expected returns. These results
carry implications for risk analysis in market efficiency studies, perfor-
mance measurement, cost-of-capital calculations, and other applications.

Factor models are frequently used to control for risk in studies of market
efficiency. This is typically done by regressing returns on the factors and
taking the residuals, perhaps added to the intercept, as a measure of risk-
adjusted returns. Alternatively, returns may be measured in excess of the
return on a matching portfolio, constructed to have similar market capital-

13 We are grateful to Chris Blake for providing data on the EGB factors.
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ization and book0market ratio as the firm to be studied. Such an approach is
required in a situation such as a study of initial public offerings ~IPOs!, as
no prior returns data are available to estimate a regression model. If size
and book0market are good proxies for risk, then the matching portfolio pro-
vides a risk adjustment. Our evidence casts serious doubt on the empirical
validity of such a procedure. Matching the market, small-firm, and book0
market exposure is expected to leave predictable dynamic behavior in the
“risk-adjusted” returns. When studying the performance of portfolios based
on a phenomenon that is correlated with aggregate economic activity, such
as IPOs, the risk of falsely detecting “market inefficiencies” is likely to be
especially acute. This is because the lagged instruments are likely to be
correlated with the event in question.

Another recent application of the FF and EGB factor models is in mea-
suring the performance of mutual funds. Here, a regression of the fund on
the factor excess returns produces an intercept that is interpreted as a multi-
beta version of Jensen’s ~1968! alpha. However, our evidence shows that
even the hypothetical, mechanically constructed portfolios in our study have
nonzero alphas in these models. The alphas are time-varying and can be
modeled as simple functions of publicly available, lagged instruments. Since
these portfolios can in principle be traded and the instruments are known,
it should be a simple matter for a fund to “game” a performance measure
constructed using these models. From this perspective, the performance of
funds in relation to such strategies remains an open puzzle.14

Factor models for expected returns, and the CAPM in particular, have
long been used in corporate cost-of-capital calculations. Here, the idea is to
find an expected return commensurate with the risk of a project, and to
discount prospective cash f lows at the risk-adjusted return to determine its
present value. Studies such as Fama and French ~1997! have put the FF
factor model to this application, and some have used it in practice. Of course,
the lack of theoretical grounding for the FF model is a serious limitation in
this context. For example, taken literally the model suggests that a firm
could change its capital costs by altering its book value, other things equal.
Our empirical evidence provides additional reasons to be suspicious of the
FF model as a source of risk-adjusted discount rates.

Our empirical results may also be interpreted from a technical perspec-
tive, in view of portfolio efficiency. A portfolio is minimum-variance efficient
if and only if expected returns in the cross section are a linear function of
asset’s covariances with the portfolio return ~e.g., Roll ~1977!!. If betas on
the FF factors provide a reasonable description of the cross section of the
unconditional expected returns of these portfolios, then a combination of the
factors is a fixed-weight, unconditionally efficient portfolio. If the lagged

14 Becker et al. ~1999! find that, although hypothetical portfolios of value stocks return more
than growth stocks, portfolios of value-investing mutual funds grouped on similar criteria in
their equity holdings do not offer higher returns than growth mutual funds. The difference is
not explained by higher expense ratios for growth funds.
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variables deliver a good proxy for the conditional expected returns at each
date, given the lagged instruments Zt , the fit is proportional in the cross
section to betas on a conditional minimum-variance portfolio given Zt . The
Fama–MacBeth regressions use the actual future returns each month as the
dependent variable. These may be viewed as equal to the unconditional ex-
pected returns plus noise, or as equal to the conditional expected returns
plus a smaller-variance noise. The covariances with a conditionally efficient
portfolio should therefore provide a more powerful regressor in the Fama–
MacBeth approach, with smaller errors than would the covariances with an
unconditionally efficient, fixed-weight portfolio.15

Although the portfolio efficiency interpretation of our results does not re-
quire a risk-based asset pricing model, if a risk-based model determines
expected returns then the results carry implications about the model. These
may provide direction for future research attempting to identify better-
specified asset pricing models. In a risk-based asset pricing model, expected
excess returns are proportional to securities covariances with a marginal
utility of wealth. In essence, we should be looking for models in which the
cross section of the conditional covariances with the marginal utility cap-
tures the cross section of the fit.

V. Robustness of the Results

We conduct a number of additional experiments to assess the sensitivity of
our results to the portfolio grouping procedures and the empirical methods.
The results of these experiments are described in this section. Tables of
these results are available by request, or on the Internet.

A. Errors-in-Variables

The cross-sectional regressions are likely to be affected by errors-in-
variables when the first-pass time-series regression coefficients appear on
the right-hand side. If the factors are measured with error, we may falsely
reject a model by introducing an explanatory variable that is correlated with
the true factor betas. Kim ~1997! explores the possibility that the CAPM is
rejected by a book-to-market factor for this reason, and we cannot rule out a
similar explanation for our rejections of the FF model. Since it is not clear
what risks the FF factors may represent, it is hard to consider measuring
those factors without error.

Errors in variables arise even when the first-pass regressions are unbi-
ased, as a result of the sampling error in the first-pass estimator. This is the
classic generated regressor problem, known to bias the second-pass, cross-

15 We emphasize that the unconditional efficiency is defined here within the set of fixed-
weight portfolios of the test assets. This is to distinguish from the notion of unconditional
efficiency in Hansen and Richard ~1987!, which is defined over the set of all dynamic trading
strategies that may depend on the conditioning information. See Bansal and Harvey ~1997! and
Ferson and Siegel ~1997! for treatments of efficiency with dynamic trading strategies.
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sectional regression slopes in finite samples and their standard errors even
in infinite samples ~see Pagan ~1984!, Shanken ~1992!, Kim ~1995, 1997!,
and Kan and Zhang ~1999! for recent analyses!. The first-pass regression
coefficients may also be biased in finite samples even without measurement
errors in the factors ~e.g., Stambaugh ~1998!, Kothari and Shanken ~1997!!.

Though measurement error problems are potentially complex, they are
likely to be more severe in the time-series coefficients of the fit than in the
estimates of the FF factor betas, because the explanatory power of a time-
series regression on the contemporaneous FF factors is much higher than on
the lagged instruments. Errors-in-variables therefore probably works against
our ability to find that the lagged instruments are significant, suggesting
that our results are conservative in view of measurement error. However,
when there is correlated measurement error in a multiple regression the
direction of the effect may be difficult to predict. We wish to be conservative
about our evidence that the fit rejects the FF model. Therefore, we conduct
experiments to assess the likely robustness of our results to measurement
errors.

We repeat our analysis using the actual values of size and book0market in
place of time-series betas on the FF factor-portfolios. As these attributes are
likely to be measured more precisely than the time-series regression coeffi-
cients, this skews the measurement error further in favor of the FF model.
We use data on 25 portfolios, sorted on the basis of book0market and size,
together with the actual values of the log of the market capitalization ~ln-
Size! and the log of the book0market ratio ~lnB0M! measured similarly to
Fama and French ~1992!.16 The data cover the July 1964 to December 1992
period, a total of 342 observations.

We repeat our previous tests for time-varying betas and alphas using this
slightly different sample of returns, and the results are similar to those re-
ported above. We find strong evidence of time-varying betas and alphas.
Table VII focuses on the cross-sectional regressions, similar to those in
Table V but using the actual lagged values of the attributes instead of the FF
betas for SMB and HML. When the market betas, lnSize and lnB0M are used
alone in the regressions, the results are as expected from Fama and French
~1992!. When the fit is included in the cross-sectional regressions, its t-ratios
are 4.3 or larger in every case we consider. This is striking evidence against
the FF three-factor model, especially in view of the measurement error issue.

As an additional check, we run cross-sectional regressions using betas on
the FF factors and on the time-series of the fitted cross-sectional coefficients
obtained from Table V, treating the latter as competing excess returns or
“factors.” This approach should place the fit at a further measurement error
disadvantage, relative to the FF factors. We find that the fit loadings pro-
duce a Fama–MacBeth t-ratio larger than 1.95 in three of the four panels
corresponding to Table V.

16 These data are courtesy of Raymond Kan and Chu Zhang, to whom we are grateful. The
sorting criteria are somewhat different than in our first sample; see Appendix B for details.
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Table VII

Attributes and the Cross Section of Stock Returns
The average coefficients from monthly cross-sectional regressions are expressed as percentage
per month. The dependent variables at time t are 25 value-weighted portfolios formed on size
and the book0market ratio, and measured in excess of the return on a 30-day Treasury bill. The
regressors are a constant, the portfolios’ betas on a stock market factor, the portfolio size ~nat-
ural log of market capitalization, lnSize!, the log of the book0market ratio ~ln~B0M!!, and a
fitted conditional expected return estimated with data up to time t 2 1 ~ fit!. The market betas
are from time-series regressions of the returns on the excess market factor return using data to
time t 2 1. The fitted expected return is from a time-series regression of the portfolio returns
on lagged instrumentals using data to time t 2 1. The lagged instrumental variables are de-
scribed in Table II. t-statistics are reported under the average coefficients. The sample is Au-
gust 1964 to December 1992, the number of time-series observations is 342, and the number of
cross-sectional regressions is 341. For the first 60 months we use the in-sample betas. After
observation 60, the sample for estimating the beta grows by one observation in Panel A. In
Panel B, the regressions use a 60-month rolling window to estimate the market betas ~the
time-series predicted returns use an expanding sample!.

g0 g~bmkt! g~lnSize! g~ln~B0M!! g~ fit!

Panel A. With Expanding Sample Betas

1.491 20.017 20.134 0.226 —
2.906 20.043 22.619 2.282 —
0.337 — — — 0.506
1.177 — — — 4.967
0.598 0.226 20.063 0.188 0.308
1.242 0.547 21.289 1.924 4.300

Panel B. With 60-Period Rolling Sample Betas

1.588 20.217 20.119 0.240 —
3.331 20.677 22.393 2.476 —
0.337 — — — 0.506
1.177 — — — 4.967
0.695 0.010 20.050 0.199 0.328
1.536 0.032 21.060 2.072 4.684

Panel C. With Expanding Sample Conditional Betas

1.479 0.012 20.138 0.222 —
3.110 0.044 22.759 2.287 —
0.337 — — — 0.506
1.177 — — — 4.967
0.770 20.025 20.056 0.199 0.324
1.686 20.091 21.187 2.065 4.663

Panel D. With 60-Period Rolling Sample Conditional Betas

1.480 0.046 20.141 0.224 —
3.308 0.326 22.766 2.299 —
0.337 — — — 0.506
1.177 — — — 4.967
0.834 0.042 20.069 0.186 0.336
1.889 0.296 21.480 1.910 4.529
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Although these additional experiments increase our confidence that our
results are robust to measurement errors, it seems impossible to completely
resolve the measurement error issue without knowledge of the underlying
“true” model of expected returns.

B. Results for Industry Portfolios

We replicate the tests of the previous sections using a sample of industry
portfolio returns. The data are from Harvey and Kirby ~1996! and are de-
scribed in Appendix B. Industry portfolios are interesting in view of the
evidence in Fama and French ~1997!, who use the FF three-factor model to
estimate industry costs of capital. Since the FF factors are designed to ex-
plain the returns on size and book0market portfolios, we expect them to
perform less well on portfolios grouped by alternative criteria.

We find strong evidence that the lagged market indicators enter as instru-
ments for time-varying betas on the industry portfolios. The F-tests for 22 of
the 25 portfolios produce p-values below 0.05, and a joint Bonferroni test
strongly rejects the hypothesis that the three-factor betas are constant. Com-
pared with our tests in Table III, this is consistent with the observation of
Fama and French ~1997! that the betas of industries vary over time more
dramatically than portfolios sorted on size and book0market.

The portfolio excess returns are regressed on a constant and the three FF
factors, and a t-test is conducted for the hypothesis that the intercept is
equal to zero. Like the size and book0market portfolios, this test produces
little evidence against the hypothesis that the FF variables can uncondition-
ally price the 25 industry portfolios and fixed-weight combinations of their
returns; only five of 25 p-values are less than 0.05.

We regress the portfolio excess returns on the three FF factors and the
vector of lagged instruments. The F-test for the hypothesis that the vector of
instruments may be excluded from the regression produces 25 p-values; all
are less than 0.01. When we allow for both time-varying betas and time-
varying alphas and test the hypothesis that the alphas are constant, we find
24 of the 25 p-values are below 0.01. In summary, the industry portfolio
evidence against the FF three-factor model is even more striking than is the
evidence based on the book0market portfolios.

We repeat our tests of the EGB four-factor model using the industry port-
folios in place of the size- and book0market-sorted portfolios. We find slightly
weaker evidence of time-varying betas and alphas here than in the other
portfolio design. Still, the tests reject the hypotheses of constant betas or
alphas. The cross-sectional regression analysis produces results generally
similar to those described earlier.

C. Size, Book-to-Market, and Momentum Portfolios

Fama and French ~1996! found that their three-factor model was most
seriously challenged by the “momentum” anomaly described by Jegadeesh
and Titman ~1993!. This is the observation that portfolios of stocks with
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relatively high returns over the past year tend to have high future returns.
To see if our results are sensitive to portfolios grouped on momentum, we
obtain data from Carhart, et al. ~1996!.17 In each month t, Carhart et al.
~1996! group the common stocks on the CRSP tape into thirds according to
three independent criteria, producing 27 individual portfolio return series.
The grouping criteria are ~1! market equity capitalization, ~2! the ratio of
book equity to market equity, and ~3! the past return for months t 2 2 to
t 2 12. The data are available for the same sample period as our previous
analysis, so we can conduct a controlled experiment by using the same
lagged instrument data.

Conducting the tests for time-varying betas as in Table III, we find strong
evidence that the betas on the FF factors vary with the lagged instruments.
The largest of the 27 p-values from the F-tests is 0.029. Examining the al-
phas as in Table IV, we find that the unconditional alphas are larger than in
the original 25 portfolios, consistent with the findings of Fama and French
~1996!. They are as large as 211 percent per year. Testing for zero uncon-
ditional alphas using F tests, 16 of the 27 p-values are less than 0.05 and the
Bonferroni p-value is less than 0.001. Testing for constant alphas in condi-
tional models with time-varying betas, the largest of the 27 p-values is less
than 0.001.

We examine cross-sectional regressions and find, similarly to Table V, that
the results are consistent with those using the other portfolio designs. When
the fitted conditional expected return is used alone in the cross-sectional
regressions, its t-ratio varies between 7.9 and 8.3. When all four variables
are used, the t-ratio for fitted expected return remains strong, between 7.5
and 8.4.

D. Data Mining

The issue of data mining has been raised in previous studies, both in con-
nection with the size and book0market effects in the cross section of stock
returns and in connection with the lagged instruments in the time series of
returns ~e.g., Lo and MacKinlay ~1990!, Black ~1993!, Breen and Korajczyk
~1994!, Foster, Smith, and Whaley ~1997!!. With data mining, a chance cor-
relation in the data may be “discovered” to be an interesting economic phe-
nomenon. An empirical regularity that is dredged from the data by chance is
not expected to hold up outside of the sample that generated it. Since many
researchers use the same data in asset pricing studies, a collective form of
data mining is a severe risk. Of particular concern here is the extent to
which our results may be an artifact of data mining.

Although we can not rule out a potential data mining bias in our results,
we have reasons to suspect this is not a serious problem. There have been
out-of-sample studies that help to mitigate concerns about data mining in

17 These data are courtesy of Mark Carhart, to whom we are grateful.
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the cross-sectional analysis of book0market. For example, Chan, Hamao, and
Lakonishok ~1991! and Fama and French ~1998! find book0market effects in
the cross section of average returns in Japan and other countries. Davis,
Fama, and French ~1998! extend the results in U.S. data back to 1929. Bar-
ber and Lyon ~1997! find the effects in a sample of U.S. firms that were not
used by Fama and French in their original ~1992! study.

There is also out-of-sample evidence that helps to mitigate concerns about
data mining in the time-series predictive ability of the lagged instruments.
The lagged Treasury bill rate, for example, was noted by Fama and Schwert
~1977!. If its explanatory power was a statistical f luke, it should not have
remained a potent predictor, as it has, in more recent samples. Pesaran and
Timmerman ~1995! present an analysis of the ability of a set of lagged in-
struments, similar to ours, to predict returns in periods after they were
discovered and promoted in academic studies.

We have an additional reason to believe that our results are not an arti-
fact of data mining. Even if the lagged instruments are dredged from the
data in previous studies, they are selected primarily for their ability to pre-
dict stock returns over time. We can think of no reason that a spurious
time-series correlation with returns should produce a spurious ability to ex-
plain the cross-section of portfolio returns.

VI. Concluding Remarks

Previous studies identify predetermined variables with some power to ex-
plain the time series of stock and bond returns. This paper shows that load-
ings on the same variables also provide significant cross-sectional explanatory
power for stock portfolio returns. We use time-series loadings on the lagged
variables to conduct powerful tests of empirical models for the cross section
of stock returns. We reject the three-factor model advocated by Fama and
French ~1993! even in a sample of equity portfolios similar to the one used
to derive their factors. We also reject the four-factor model advocated by
Elton, Gruber, and Blake ~1995!. The results are robust to variations in the
empirical methods, and to a variety of portfolio grouping procedures.

Our focus is not to search for alternatives to the factors advocated by
Fama and French and Elton, Gruber, and Blake. Our evidence does suggest
that applications of these factor models should control for time-varying be-
tas, and that doing so provides some improvement. However, even condi-
tional versions of the models, with time-varying betas, appear to leave
significant predictable patterns in their pricing errors.

Loadings on lagged instruments reveal information that is not captured by
these popular factors for the cross section of expected returns. This should
raise a caution f lag for researchers who would use the FF or EGB factors in
an attempt to control for systematic patterns in risk and expected return.
The results carry implications for risk analysis, performance measurement,
cost-of-capital calculations, and other applications.
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Appendix A

A. Efficient Weighting of Fama–MacBeth Regressions

Consider a pooled time-series and cross-section regression model written
similarly to Litzenberger and Ramaswamy ~1979!, as:

Y 5 Xg 1 U, E~UU ' ! 5 V, ~A1!

where Y is a TN 3 1 vector. The first N rows are the returns of N stock
portfolios for the first month of the sample, followed by the second month,
and so on. There are T months in the sample. The TN 3 K matrix X has a
column of ones, and the remaining columns are the predetermined portfolio
attributes, such as the betas, book-to-market ratios, or the fitted expected
returns, stacked up like the dependent variable. The K 3 1 vector of param-
eters, g , are the average risk premiums that we wish to estimate. The TN 3
TN covariance matrix is V.

Under standard assumptions the generalized least squares estimator is
best linear unbiased and is given as:

gGLS 5 ~X 'V21X !21X '21Y. ~A2!

We make the assumption that the error terms are uncorrelated over time
but correlated across stock portfolios with a general N 3 N covariance ma-
trix at date t, Vt . This implies that V has a block diagonal structure with the
Vt ’s on the diagonal. Using this structure in equation ~A2!, the GLS estima-
tor may be written as:

gGLS 5 ~St Xt
'Vt

21 Xt !
21~St Xt

'Vt
21 Yt !, ~A3!

where St indicates summation over time. Now, the GLS version of the Fama–
MacBeth coefficient for month t may be written as

gFM, t 5 ~Xt
'Vt

21 Xt !
21~Xt

'Vt
21 Yt !. ~A4!

From equations ~A3! and ~A4! we can express the full GLS estimator as:

gGLS 5 St $~St Xt
'Vt

21 Xt !
21~Xt

'Vt
21 Xt !%gFM, t , ~A5!

which shows that the efficient GLS estimator is a weighted average of the
Fama–MacBeth estimates with the weights for each date t proportional to
Xt
'Vt

21 Xt .
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From equation ~A4! we calculate the variance of a typical Fama–MacBeth
estimator for month t as E$~gFM, t 2 g!~gFM, t 2 g!' % 5 ~Xt

'Vt
21 Xt !

21. Thus, we
can see that the efficient weighting of the FM estimators in equation ~A5!
places more weight on the months with lower variance estimators, and less
weight on a month with an imprecise estimate.

The standard errors of the GLS estimates may be obtained from the usual
expression: Var~gGLS! 5 ~St Xt

'Vt
21 Xt !

21. However, when N is large relative
to T ~e.g., a standard design with a rolling regression estimator of beta,
N525, and T560!, full covariance GLS is not practical. In such cases weighted
least squares ~WLS! may be used, which assumes that Vt is diagonal. But
with a diagonal covariance matrix the standard error estimator does not
capture the strong cross-sectional dependence in stock returns, which moti-
vates the original Fama–MacBeth approach.

Fama and MacBeth ~1973! suggest calculating a standard error for the
overall coefficient from the time-series of the monthly estimates. The vari-
ance of the sample mean of the monthly estimates is ~10T !~T 21 St gFM, t

2 2
~T 21St gFM, t!

2 !, which assumes that the model errors are uncorrelated over
time but cross-sectionally dependent.

We provide a simple modification of the approach of Fama and MacBeth for
the efficient-weighted FM estimator. We first express gGLS 5 Stwt gFM, t , where
the weight for each month, wt 5 ~~St Xt

'Vt
21 Xt !

21~Xt
'Vt

21 Xt !!. The variance
may be obtained as

s2~gGLS ! 5 ~10T !~T 21 St wt
2 gFM, t

2 2 ~T 21 St wt gFM, t !
2 !. ~A6!

The standard errors for the efficient-weighted FM estimator are thus ob-
tained by replacing gFM, t by wt gFM, t in the usual calculation.

B. A Measure of Explanatory Power

The simplest measure of explanatory power in a regression model is the co-
efficient of determination, or R-squared. However, the usual R-squared is dif-
ficult to interpret in a cross-sectional regression for stock returns because of
the strong cross-sectional dependence. Consider a standard, GLS-transformed
version of equation ~A1!:

EY 5 EXg 1 EU, E~ EU EU ' ! 5 ITN , ~A7!

where EY 5 V2102Y, EX 5 V2102X, and EU 5 V 2102U. In the transformed model
there is no time-series or cross-sectional correlation of the errors, and the
errors are homoskedastic. We use the R-squared of the transformed model as
a measure of the overall explanatory power. The GLS R-squared is advo-
cated by Kan and Zhang ~1999! for cross-sectional regressions. The overall
measure here gives equal weight to the time-series and cross-sectional di-
mensions of explanatory power in the transformed model. Within a given
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cross section, observations with larger standard deviations are given smaller
weight. In the time-series dimension, months with larger standard devia-
tions of the error term are given smaller weights.

Define demeaned variables, yit 5 Yit 2 N21T 21St SiYit , demeaned using
the grand mean, taken over both the time series and cross section. Stack the
yit ’s into a TN 3 1 vector, y, using the same convention as before. The de-
meaned predictors x and the residuals, u, are defined analogously. A simple
expression for the overall R-square measure uses the TN 3 1 vectors y, x,
and u. The R-square for the transformed model ~A7! is 1 2 ~u 'V21u!0
~ y 'V21y!. Substituting the expression for gGLS with the assumed diagonal
structure of V, we can express the R-square in terms of the demeaned N-vectors
of the original data:

R2 5 ~St yt
'Vt

21 xt !~St xt
'Vt

21 xt !
21~St xt

'Vt
21 yt !0~St yt

'Vt
21 yt !. ~A8!

In a typical application such as ours, full covariance GLS is not practical. We
therefore use a weighted least squares version of equation ~A8!. We replace
Vt with a diagonal matrix using an estimate of the variance of the residuals
for each test asset in a given month on the diagonals.

Appendix B

A. Book-to-Market and Size-Sorted Portfolios

Returns on 25 value-weighted portfolios of the common stock of firms listed
on the New York Stock Exchange ~NYSE! and covered by COMPUSTAT are
formed. Following Dimension Fund Advisors’ exclusion criteria, foreign firms,
ADRs, and REITs are excluded. Portfolios are formed by ranking firms on
their market capitalization ~size! in June of each year and the ratio of book
value to market value of equity ~BE0ME! as of December of the preceding
year. The size and BE0ME sorts are independent. Firms are ranked and
sorted annually into five groups. Monthly portfolio returns are then com-
puted from July of year t11 to June of t12 for each group. BE is Stockhold-
er’s Equity ~A216! less Preferred Stock Redemption Value ~A56! ~or Liquidating
Value ~A10!, or Par Value ~A130!, depending on availability!, plus balance
sheet deferred taxes ~A35!, if available. If Stockholders Equity is not avail-
able, it is calculated as Total Common Equity ~A60! plus the par value of
preferred stock ~A130!.

B. Industry Portfolios

Monthly returns on 25 portfolios of common stocks are from Harvey and
Kirby ~1996!. The portfolios are value-weighted within each industry group.
The industries and their SIC codes are listed in Table BI.
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