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Autoregressive Conditional Skewness

I. Introduction

Skewness, asymmetry in distribution, is found in many important economic variables such as

stock index returns and exchange rate changes, see for example, Harvey and Siddique (1998)

for analysis of U.S. monthly stock returns. Negative skewness in returns can be viewed as

the phenomenon where, after the returns have been standardized by subtracting the mean,

negative returns of a given magnitude have higher probabilities than positive returns of the

same magnitude or vice-versa. This can be measured through the third moment about the

mean.

The second moment of returns, variance, has been the subject of a large literature in

�nance. Variance of returns has been widely used as a proxy for risk in �nancial returns.

Therefore, the properties of variance by itself as well as the relation between expected return

and variance have been important topics in asset pricing. Campbell (1987), Harvey (1989),

Nelson (1991), Campbell and Hentschel (1992), Hentschel (1995), Glosten, Jagannathan, and

Runkle (1993), and Wu (1998) have focused on the intertemporal relation between return

and risk where risk is measured in the form of variance or covariance. An important concern

has been the sign and magnitude of this tradeo�.

The generalized autoregressive conditional heteroskedasticity (GARCH) class of mod-

els, including the exponential GARCH (EGARCH) speci�cation, have been the most widely

used models in modeling time-series variation in conditional variance. Persistence and asym-

metry in variance are two stylized facts that have emerged from the models of conditional

volatility. Persistence refers to the tendency where high conditional variance is followed

by high conditional variance. Asymmetry in variance, i.e., the observation that conditional

variance depends on the sign of the innovation to the conditional mean has been documented

in asymmetric variance models used in Nelson (1991), Glosten, Jagannathan, and Runkle

(1993) and Engle and Ng (1993). These studies �nd that conditional variance and innova-

tions have an inverse relation: conditional variance increases if the innovation in the mean

is negative and decreases if the innovation is positive.

The fourth moment of �nancial returns, kurtosis, has drawn substantial attention as

well. This has been primarily because kurtosis can be related to the variance of variance
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and, thus, can be used as a diagnostic for the correct speci�cation of the return and variance

dynamics.

In contrast, skewness, the third moment, has drawn far less scrutiny in empirical asset

pricing, though skewness in �nancial markets appears to vary through time and also appears

to possess systematic relation to expected returns and variance. The time-series variation in

skewness can be viewed as analogous to heteroskedasticity.

This paper studies the conditional skewness of asset returns, and extends the tra-

ditional GARCH(1,1) model by explicitly modeling the conditional second and third mo-

ments jointly. Speci�cally, we present a framework for modeling and estimating time-varying

volatility and skewness using a maximum likelihood approach assuming that the errors from

the mean have a non-central conditional t distribution. We then use this method to model

daily and monthly index returns for the U.S., Germany, and Japan, and weekly returns for

Chile, Mexico, Taiwan, and Thailand; concurrently estimating conditional mean, variance

and skewness. We also present a bivariate model of estimating coskewness and covariance

in a GARCH-like framework. We �nd signi�cant presence of conditional skewness and a

signi�cant impact of skewness on the estimated dynamics of conditional volatility. Our re-

sults suggest that conditional volatility is much less persistent after including conditional

skewness in the modeling framework and asymmetric variance appears to disappear when

skewness is included.

The dynamics of moments over time also appear to be intimately tied with frequency,

seasonality and aggregation in returns. Daily and monthly returns on the same asset appear

to have quite di�erent properties. Aggregation of individual stocks into larger portfolios

also appears to have substantial impact on the properties of conditional variance. Finally,

seasonal e�ects a�ect the �ndings on behavior of moments as well. This includes the well-

known January e�ect in the conditional mean along with less familiar day of the week e�ects

in daily returns.

A third important question, the relation between the conditional mean and condi-

tional variance, has been answered with conicting �ndings. Campbell and Hentschel (1992),

French, Schwert, and Stambaugh (1987), and Chan, Karolyi, and Stulz (1992) have found

either an insigni�cant or positive relation whereas Glosten, Jagannathan, and Runkle (1993),

Campbell (1987), Pagan and Hong (1991), and Nelson (1991) �nd a negative relation. Wu

(1998), using a more general speci�cation of the Campbell and Hentschel (1992) models,
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�nds a substantially more negative relation between expected returns and volatility.

Estimation of time-varying moments is important for testing asset pricing models

that impose restrictions across moments. Estimation of time-varying skewness may also be

important in implementing models in option pricing. The presence of skewness can also a�ect

the time-series properties of the conditional mean and variance. Skewness in the returns of

�nancial assets can arise from many sources. Brennan (1993) points out that managers have

an option-like features in their compensation. The impact of �nancial distress on �rms and

the choice of projects can also induce skewness in the returns. More fundamentally, skewness

can be induced through asymmetric risk preferences in investors. However, we do not study

the causes of skewness in this paper.

In the following sections, we lay out the model for estimating time-varying conditional

skewness in returns, document the substantial variations and seasonalities in skewness and

empirically examine the impact that inclusion of conditional skewness has on the properties

of conditional variance and the relation between return and conditional variance. We also

carry out diagnostic tests of our model.

II. The Model

We use the residuals from the mean to estimate the conditional variance and skewness of

asset returns. The residual from the conditional mean is

�t+1 = rM;t+1 � �0Zt(1)

where �0Zt is the conditional mean, rM is the variable to be modeled, which in our case is

the excess return on the market index, and Zt are the instruments in 
t, the full information

set.

Since our primary focus is on modeling the conditional variance and skewness, we use

a GARCH-M speci�cation for the conditional mean e�ectively using conditional variance of

rM;t as an instrument. This is consistent with the speci�cation used in much of the literature

on persistence and asymmetry in variance.1 Our speci�cations for conditional variance and

skewness are GARCH(1,1) in the terminology of the ARCH/GARCH literature introduced by

Engle (1982) and Bollerslev (1986). The initial GARCH speci�cation assumed that returns

come from a conditionally normal distribution. However, stock market returns have thicker
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tails than conditional normal distributions would imply. Bollerslev (1987) assumes that the

returns come from a central-t distribution. The central-t distribution permits thicker tails

but is still symmetric like the normal distribution.

However, none of these models accommodate time-varying conditional skewness in re-

turns. We assume that the excess returns rM;t+1 have a noncentral conditional-t distribution.

In contrast to the normal or central-t distributions, a conditional noncentral t distribution

allows us to estimate time-varying skewness of either sign. A noncentral conditional-t dis-

tribution also allows us to write the moments using simple and familiar functional forms.

The conditional noncentral-t distribution is de�ned by two time-varying parameters, �t+1,

the degrees of freedom, and �t+1, the noncentrality parameter. The conditional variance is

the scale parameter controlling the dispersion of the data. We use the conditional variance

to standardize the returns to have unit variance (with non-zero mean, however,) and then

use the conditional mean and skewness to compute �t+1 and �t+1.

The mean and skewness are respectively the location and shape parameters. A

noncentral-t distribution scaled to have a unit variance is a generalization of the central-t

distribution. The noncentrality parameter controls the shape. If it is negative, the distribu-

tion has a tail to the left implying that the median is greater than the mean. For a positive

noncentrality parameter, the tail is to the right and the median is less than the mean. For

the noncentral-t with unit variance, the sample likelihood function can be written as:
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where � is the gamma function and �t+1 is the degrees of freedom of the t distribution.

The likelihood function has two time-dependent terms, �t+1 and �t+1, the degrees of freedom

and the noncentrality parameter.2 The noncentrality parameter determines the shape (and

therefore skewness) of the distribution.

The GARCH(1,1) speci�cation for the conditional variance and skewness is autoregressive.3

De�ne ht = Vart�1[rM;t], and st = Skewt�1[rM;t], thus:

ht = �0 + �1ht�1 + �2�
2

t�1(3)
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st = 0 + 1st�1 + 2�
3

t�1(4)

We call this speci�cation of variance and skewness as the GARCHS(1,1,1) (GARCH with

Skewness) model. Variance and skewness need to be constrained so that they are stationary,

and in the case of variance, positive. To ensure that conditional variances and skewnesses are

nonexplosive, we need to impose the constraints that 0 < �1 < 1, 0 < �2 < 1, �1 < 1 < 1 ,

�1 < 2 < 1 and �1 + �2 < 1 and �1 < 1+ 2 < 1. We have used penalty functions as well

as the logistic, (1 + exp�x)�1, and tanh�1(x) functional forms to operationally impose these

constraints on �1, �2, 1 and 2.

To operationalize the estimation, we estimate the central conditional variance and

skewness and use the recurrence relation in Kendall, Stuart and Ord (1991) to obtain the

noncentral skewness and variance from the central moments:

�3 = �03 � 3�02�1 + 2�31

�2 = �02 � �21

where �2 and �3 are the central moments (about the mean) and �02 and �
0

3 are the noncentral

moments (about 0). The noncentrality parameter �t+1 and the degrees of freedom, �t+1, (after

the returns are normalized to have unit variance) can be computed by solving the following

system of nonlinear equations:
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We compute the noncentrality parameter and degrees of freedom implied by the conditional

mean and skewness at each observation, and compute the log-likelihood.

The noncentral skewness can be expressed in terms of the noncentrality parameter,

�t as in Bain (1969).
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2X

i=1

3!�3t
(2i� 1)!(2� i)!22�i

�
�
�t�3
2

�
�
3

2

t+1

2
3

2�
�
�t
2

�(7)

We set the initial conditional variance and skewness, h1 and s1, to the unconditional

variance and skewness. The parameters to estimate are:

� = [� �  ]0
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We maximize the log-likelihood function in (3) to obtain the parameter estimates.

An important consideration is whether the conditional skewness dynamics implied

by the GARCH(1,1) model are consistent with the dynamics for conditional skewness. Lee

and Hansen (1994) show that if rescaled innovations have a bounded fourth moment, then

the QMLE parameter estimates are consistent. The noncentral t distribution we assume

for the innovations in our model does have bounded fourth moments. Therefore, parame-

ter estimates from our likelihood estimation are consistent. With the GARCH(1,1) model,

assuming that the errors have a conditional Normal or t distribution, there should be no

skewness left. However, the residuals from �tting GARCH(1,1) models do have skewness.

For example, when a GARCH(1,1)-normal model is �t to daily S&P500 returns, the resid-

uals have an unconditional skewness of -2.08 and kurtosis of 54.94, excluding the week of

October 21, 1987. Standardized (i.e. divided by standard deviation) residuals have a nega-

tive skewness of -0.27 and excess kurtosis of 4.74. In contrast, when we �t the noncentral t

distribution, the standardized residuals have a skewness of -0.17 and kurtosis of 0.90. This

implies that noncentral-t distribution is a better description of the data-generating process.

Additionally, Newey and Steigerwald (1997) show that in case of non-Gaussian likelihood

estimates, unless there is an adjustment for the location shift in the estimation of the mean,

there is an asymptotic bias.

The likelihood function is highly nonlinear and to obtain the global maximum, good

starting parameter values are essential. For this purpose, we estimate the parameters in

stages moving from simpler models to more complex speci�cations. The stages of the estima-

tion also serve diagnostic purposes, since the simpler models are nested in the complex mod-

els. We compute the standard errors on the parameter estimates using the quasi-maximum

likelihood approach in Bollerslev and Wooldridge (1992).

The �nal speci�cation we propose makes the conditional variance and skewness of

an asset, i , dependent on covariance and coskewness with another asset, M. We can view

asset, M, as the market. The speci�cations for mean, variance, and skewness in this bivariate

GARCHS(1,1,1)-M model are:

ri;t = �0;i + �1;ihi;t�1 + �irM;t + �i;t

rM;t = �0;M + �1;MhM;t�1 + �M;t

hi;t = �0;i + �1;ihi;t�1 + �2;i�
2

i;t�1 + �1hM;t + �2�i;t�1�M;t�1(8)
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hM;t = �0;M + �1;MhM;t�1 + �2;M�
2

M;t�1

si;t = 0;i + 1;isi;t�1 + 2;i�
3

i;t�1 + !1sM;t + !2�i;t�1�
2

M;t�1

sM;t = 0;M + 1;MsM;t�1 + 2;M�
3
M;t�1

where we assume that the returns ri;t and rM;t are distributed as noncentral-t variables.4

The advantage of the speci�cation is that the return on asset i depends on its own lagged

variance, hi;t�1 and the beta with the market, �i . However, variance of asset i , hi;t depends

on lagged own variance hi;t�1 as well as two terms that come from the market. These are

contemporaneous market variance, hM;t as well as product of lagged innovations in asset i

and the market M. The speci�cation of skewness for asset i is also similar.

A. Models for asymmetric variance

The basic GARCH speci�cation for conditional variance in (3) assumes that the innovations

do not have di�erential impacts based on the sign of the innovation. To accommodate the

possibility of asymmetric variance and seasonalities modi�cations of the GARCH model have

been proposed. We use two speci�cations for asymmetric variance. The �rst is the Glosten,

Jagannathan, and Runkle (1993) speci�cation for returns on NYSE value-weighted index.

They also �nd signi�cant seasonal e�ects in variance. Their most successful speci�cation is

is:

rt = �0 + �1ht�1 + �t

�t = (1 + �1OCT � �2JAN)�t

ht�1 = �0 + �1ht�2 + �2�
2
t�1 + �3R

2
f;t�1 + ��2t�1It�1(9)

It�1 = 1 if �t�1 > 0 and 0 otherwise

To understand how skewness interacts with asymmetric variance, we use these speci�cations

for conditional mean and variance for the monthly returns. There are 9 parameters in this

speci�cation.

An alternative speci�cation for capturing asymmetry in conditional variance is the

EGARCH model introduced by Nelson (1991). The EGARCH models parameterize the log-

arithm of the conditional variance and permits an asymmetric relation. In the context of the

speci�cations above, the EGARCH-M model has the following speci�cation for conditional
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variance.

Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3Rf;t + �
�t�1p
ht�1

It where Ht�1 = log(ht�1)(10)

The di�erent speci�cations for conditional variance have found rather di�erent relations

between expected return and conditional variance on one hand as well as very di�erent

forms of variance asymmetry on the other.

In modeling daily returns, we adapt the Glosten, Jagannathan and Runkle (1993)

and Nelson (1991) speci�cations for monthly conditional mean and variance. We use a

Monday dummy in variance speci�cation instead of riskfree rate as an instrument. This

is motivated by the observation that Mondays appear to be characterized by substantially

greater volatility than other days of the week. This choice is also supported by the �nding

in Foster and Viswanathan (1993) that Mondays are characterized by high volatility and

trading costs. The speci�cations are then:

GARCH Speci�cation: ht = �0 + �1ht�1 + �2�
2

t�1 + �3MONt + ��2t�1It

EGARCH Speci�cation: Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3MONt + �
�t�1p
ht�1

It

Ht�1 = log(ht�1) MON= 1 if t is a Monday and 0 else.

Additionally, we also use speci�cations that allow di�erent GARCH-M coe�cient �1 for

Mondays and the other days of the week.

III. Empirical Results

A. Data

We examine several data sets on daily and monthly frequency in our empirical work. For

the daily returns we use S&P500 (U.S.) over the period January 4, 1969 to December 31,

1997, DAX 30 (Germany) over the period over January 4, 1975 to December 31, 1997, and

Nikkei 225 (Japan) over the period January 4, 1980 to December 31, 1997. Table 1 presents

average return, variance and skewness of continuously compounded daily returns on S&P500,

DAX 30, and Nikkei 225 index by year. These are unconditional moments over the periods.

The summary statistics show that mean, variance and skewness vary substantially by year

with skewness for U.S. varying from -5.081 in 1987 to 0.805 in 1984, for Germany from
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-4.125 in 1989 to 0.186 in 1981, and for Japan from -2.940 in 1987 to 1.542 in 1982. We

use bootstrapped standard errors for skewness and test using the multivariate t-test to test

whether skewness is equal across the years. This is rejected for all three markets. Figure 1

illustrates the variation in skewness month by month for the S&P500 index. For the bivariate

GARCHS model we use daily returns on IBM and S&P500 over the period January 4, 1969

to December 31, 1997.

We then examine how the moments vary by month and day of the week. These

summary statistics are presented in panels A and B of Table 2. The seasonal variations

in skewness for all three markets by month as well as day of the week are very strong. In

particular, Mondays are characterized by high volatility and negative skewness for both U.S.

and Germany, even if the crash of 1987 is excluded.

We also examine the monthly CRSP value-weighted index return for NYSE over the

period January 1951 to December 1995. This is the updated version of the data used by

Glosten, Jagannathan, and Runkle (1993). We use the total return on the 30-day U.S.

Treasury bill reported by Ibbotson Associates as the riskfree rate. The returns are contin-

uously compounded. The unconditional skewness for this series is -0.729 (-0.314 excluding

September, October, and November of 1987.)

B. Results

In our empirical work, we estimate the di�erent models for conditional variance using

GARCH, EGARCH and noncentral-t speci�cations. Our estimation procedure is multi-step.

First, we estimate the conditional normal GARCH(1,1)-M model of Glosten, Jagannathan

and Runkle (1993). There are a total of seven parameters in this speci�cation for daily

returns. with two parameters in the mean. Conditional variance has three GARCH(1,1)

parameters, the asymmetric variance parameter, and the parameter for the Monday dummy.

For monthly returns, this speci�cation has nine parameters with two additional seasonal

dummies and the coe�cient for Monday replaced by the coe�cient on riskfree rate of re-

turn.

Next we estimate an EGARCH(1,1)-M model, i.e. assuming that the conditional

variance follow the EGARCH process of Nelson (1991). This model has the same number of

parameters as the GARCH speci�cation above.
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Finally, we estimate the model with time-varying conditional skewness.5 There are

three additional parameters in the conditional skewness equation. Degrees of freedom and

noncentrality are jointly determined by the mean and conditional skewness. Thus, we have

a total of ten parameters for the daily returns and twelve parameters for monthly returns.

The three classes of models we estimate, nest most other models of conditional vari-

ance. We also estimate the nested models, for example without the asymmetric variance

parameter or seasonals.

Table 3 presents the results for U.S. daily returns. In the basic GARCH-M and

EGARCH models, the relation between returns and conditional variance, as measured by

�1, is positive and insigni�cant. Conditional variance shows as very high level of persistence

as shown by the �1 estimates. The parameter for asymmetric variance, � is signi�cant in both

GARCH and EGARCH models but has opposite signs. In this speci�cation, the coe�cient

on conditional variance is negative and insigni�cant on Mondays but positive and signi�cant

for other days of the week. The �nding that Mondays are di�erent and return and conditional

variance are negatively related is consistent with Foster and Viswanathan (1993) and may be

explained by their result that trading costs are higher on Mondays. Finally, we estimate the

model with conditional noncentral-t. The coe�cients on conditional skewness are signi�cant

and negative for 1. The coe�cients for conditional variance decline substantially. The

parameters for GARCH-M and asymmetric variance are negative and insigni�cant. The

coe�cient for the Monday dummy in variance, �3, shows up as positive for GARCH and

EGARCH models but not for noncentral-t. This may indicate that skewness in returns

is somehow linked to Mondays, and including skewness obviates the need for including a

Monday dummy in conditional variance.

Table 4 presents the results for Germany. German index returns show less persistence

in variance than U.S. returns. Additionally, �1, the parameter for the relation between

returns and conditional variance is positive for GARCH, EGARCH, and noncentral-tmodels.

Use of a noncentral-t model causes a substantial decline in persistence. The sign of �, the

coe�cient for asymmetric variance, appears to be linked to the Monday dummy, �3, in

variance. For noncentral-t, �3 comes out as negative. Conditional skewness parameters, 1

and 2 are signi�cant.

Table 5 presents the results for Japanese daily compounded returns. As seen in

the case for U.S. and Germany, the inclusion of skewness causes a substantial decline in
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persistence in variance as well as a decline in �, the parameter for asymmetric variance.

The parameter for the relation between returns and conditional variance, �1 is positive but

insigni�cant for noncentral-t whereas it is positive for the GARCH speci�cation and negative

and insigni�cant for the EGARCH speci�cation.

Table 6 presents the results for monthly returns on value-weighted NYSE index. We

have estimated all the models with and without seasonals and with and without an asym-

metric variance component. The models without skewness show fairly high persistence levels

in conditional variance. However, the addition of skewness to the GARCH equation causes

the persistence to decline somewhat with �2, the coe�cient for lagged variance declining

from 0.57 to 0.45. Interestingly, the addition of seasonal dummies causes the persistence to

increase.

The coe�cient for lagged skewness is signi�cant and negative (-.28) implying that

periods of high skewness are followed by low skewness. This coe�cient increases if an asym-

metric variance component is permitted.

As Glosten, Jagannathan and Runkle (1993) and Engle and Ng (1993) have found,

asymmetry in variance depends on the speci�cation used. In particular, EGARCH shows an

insigni�cant positive asymmetric coe�cient, � whereas it appears signi�cant and negative

with a GARCH speci�cation. However, if skewness is added to the speci�cation, � declines

substantially.

C. Diagnostic tests

For diagnostics, we focus on the properties of the standardized residuals. For daily re-

turns on the S&P500, the standardized (i.e. divided by standard deviation) residuals from

GARCH(1,1)-M model have a skewness of -0.27 and excess kurtosis of 4.74. In compari-

son, standardized residuals from the GARCHS(1,1,1)-M model have a skewness of -0.17 and

excess kurtosis of 0.90.

We also graph the behavior conditional variance and skewness for the U.S. returns.

Figure 1 shows the conditional skewness for the daily S&P500 returns. Panels A, B, and C

of Figure 2 plot conditional variances for the monthly U.S. returns. Panel A shows the very

noisy variations in volatility caused by the inclusion of monthly seasonals in the GARCH

model speci�cation of Glosten, Jagannathan, and Runkle (1993.) In contrast, the EGARCH
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model gives us a much smoother plot in panel B. However, even in the GARCH model

including seasonals, inclusion of skewness through a noncentral-t distribution smoothes out

the conditional variance function as seen in panel B. The noncentral-t model also captures

the substantial increase in conditional variance in October 1987.

Conditional moment tests were introduced in Newey (1987), Engle, Lilien and Rob-

bins (1987) and Nelson (1991) for testing the speci�cation of a model. Using the standardized

residuals from the estimated models, a set of orthogonality conditions are constructed that

should be satis�ed if the model is correctly speci�ed. These orthogonality conditions, with a

proper covariance matrix, can then be used to construct a Wald statistic distributed as a �2

with degrees of freedom equal to the number of orthogonality conditions tested. We use the

standardized residuals, Ẑt from both the GARCH(1,1)-M and the GARCHS(1,1,1)-M model

applied to the monthly returns on the value-weighted NYSE/AMEX index to construct the

following sixteen orthogonality conditions:
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We test the individual conditions as well as conduct a �2 test with sixteen degrees of freedom.

The evidence in Table 7 suggest that the GARCH(1,1)-M model is misspeci�ed. There

are two moment conditions with t-ratios that exceed 2.00. The overall test-statistic rejects

the model at 5% level of con�dence. In contrast, for the GARCHS(1,1,1)-M model, The

individual t-statistics are all essentially zero. In addition, we do not reject the model at the

conventional signi�cance levels of 5% and 10%. When the three months around October,

1987 are dropped from the sample, the signi�cance level increases to 0.115.6 As a benchmark

we also carry out the tests using the GARCH(1,1,1)-M model. The results show that the

individual t-statistics that relate to the skewness in the residuals are somewhat signi�cant.

Additionally, the �2-statistic also rejects that the residuals are all 0.

Another diagnostic test can be constructed based on Newey and Steigerwald (1997).

They show that the quasi-maximum likelihood estimators are not consistent in the pres-

ence of asymmetric distributions. To produce consistent estimators, we use the following

speci�cation for mean:

rt = �0 + �1ht�1 + �
q
ht�1 + �t(12)

�t = �t � �
q
ht�1

where �1 and � are identi�ed since the residuals used to compute conditional variance are

constructed excluding �.7 Our estimate of � in the GARCHS(1,1,1) model for daily returns

is 0.003 and insigni�cant whereas for the GARCH(1,1)-M model it is -0.23 and signi�cant.

This implies that the GARCHS(1,1,1) speci�cation captures the asymmetry in distribution

successfully.
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As an alternative diagnostic for our estimation method, we also carry out simulations.

In doing the simulations, we are confronted with the problem that the speci�cations we are

interested in display time-varying means, variances and skewnesses, i.e. they come from a

stochastic process rather than a single distribution.

We generate a data sample of 718 observations assuming that the conditional variance

and skewness have the same coe�cients as the weekly U.S. data set. We use a noncentral t

distribution with 8.00 degrees of freedom and the noncentrality parameter is -1.07. We then

estimate the parameters for a noncentral t model for the sample. We repeat this procedure

a 1000 times. Thus, we have a 1000 estimates of noncentrality parameter, �t, and and the

degrees of freedom �t, We use these estimates to see how powerful our model is in detecting

skewness in data. We �nd that the 10th percentile point for the noncentrality parameter is

-3.50 and the 90th percentile is -0.10. Therefore, the coverage in detecting skewness is quite

high.

A �nal diagnostic is to examine how well the various models perform in explaining

the squared residuals of the returns. Table 8 presents the actual squared residuals and

the conditional variance predictions for three models including the GARCHS(1,1,1) model

for 12 months starting with April 1987. None of the GARCH-type models, including the

GARCHS(1,1,1) model, appears able to predict October 1987. However, the substantial

increase in conditional variance after October 1987 is picked up by the GARCHS(1,1,1)

model.

D. Other �nancial time-series with skewness

We also examine other time-series to understand how conditional skewness a�ects their

properties. We focus on Mexico, Chile, Thailand, and Taiwan. The returns cover the period

1/6/89 to 1/16/98, a total of 472 weeks. Bekaert and Harvey (1997) present a model of

volatility using weekly world and local information that impact local volatility in emerging

markets. They �nd that the relative importance of world versus local information changes

through time. The sample we investigated is, by and large, after the �nancial integration

of these markets had commenced. Our GARCHS(1,1,1) model is only meant to illustrate

potential applications in these markets. A more complete volatility model would likely

account for some of the features of the Bekaert and Harvey model.
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The unconditional skewness over this period has been -1.343 for Mexico, -0.138 for

Taiwan, -0.656 for Thailand and 0.110 for Chile. Annualized standard deviations have ranged

from 68.10% for Chile to 114.89% for Taiwan. However, these numbers mask substantial

variation over time. Figure 3 plots the variations in volatility and skewness for the four

countries. When variance and skewness are computed quarterly, substantial serial correlation

in the quarterly variances and skewnesses also exist. The serial correlations in variance

are 0.54, 0.56 and 0.58 for Mexico, Taiwan and Thailand but -0.11 for Chile. The serial

correlations in the quarterly skewness are 0.17 for Chile, -0.02 for Mexico, -0.16 for Taiwan

and -0.25 for Thailand.

These summary statistics suggest that an autoregressive model may be successful in

explaining the time-series variations in the variances and skewnesses of the emerging market

returns. Therefore, we estimated GARCHS(1,1,1)-M models with 10 parameters for each

of the four countries. We �nd that the coe�cient on lagged skewness, 1, the coe�cient

for lagged skewness is positive for Mexico and negative for the other three. 2 is rather

insigni�cant. The estimates of 1 are -0.11 for Chile, 0.31 for Mexico, -0.04 for Taiwan and

-0.21 for Thailand. The parameter estimates for conditional variance are quite high for all

four countries in GARCH(1,1)-M estimation, with the sum ranging from 0.91 for Mexico to

0.98 for Taiwan. With the inclusion of conditional skewness in the model, the parameters

decline though not substantially. These results suggest that conditional skewness should

likely be incorporated in the models for estimating the volatility dynamics in the emerging

market returns.

IV. Conclusions

We present a new methodology for simultaneously modeling and estimating conditional

mean, variance and conditional skewness in a maximum likelihood framework assuming a

noncentral conditional t-distribution. Our application of this methodology daily, weekly

and monthly returns on the U.S., German, Japanese, Mexican, Chilean, Taiwanese and

Thailand stock index returns con�rms that autoregressive conditional skewness is important.

Additionally, the inclusion of skewness impacts the persistence in variance.

We also explore the relation between conditional skewness and the asymmetric vari-

ance models proposed by Nelson (1991), Glosten, Jagannathan, and Runkle (1993) and
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others. We �nd that the inclusion of skewness can cause asymmetry in variance to disap-

pear. However, we �nd that the relation between return, variance, and skewness of equity

returns is intimately linked to the seasonal variations in the conditional moments.

With the signi�cant presence of skewness in returns and the impact of skewness on

returns and volatility, the importance of conditional skewness in portfolio analysis is an

important extension of this paper. In particular, energy markets, small size stocks, and

distressed �rms' stock returns display substantial skewness and understanding performance

of returns of such assets needs recognition of this feature. Additionally, use of the autore-

gressive conditional variance and skewness in option pricing is another possible extension of

this paper.
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Table 1

Summary statistics for daily returns by year

This table presents summary statistics for continuously compounded value-weighted returns on
S&P500 index (U.S.) from January 4, 1969 to December 31, 1997, a total of 7566 observations, on
DAX 30 Index (Germany) from January 4, 1975 to December 31, 1997, a total of 6000 observations,
and on Nikkei 225 (Japan) from January 4, 1980 to December 31, 1997, a total of 4694 observations,
The returns are broken down by year.

U.S. Germany Japan

Year Mean �104 Var�104 Skew Mean �104 Var�104 Skew Mean �104 Var�104 Skew

1969 -4.636 0.418 0.398

1970 0.037 1.010 0.767

1971 3.925 0.601 0.609

1972 5.587 0.309 -0.250

1973 -7.308 0.969 0.020

1974 -13.512 1.908 0.453

1975 10.506 0.943 0.072 12.942 0.771 0.114

1976 6.687 0.481 0.065 -3.864 0.582 -0.013

1977 -4.700 0.319 -0.104 2.932 0.332 0.059

1978 0.406 0.613 0.409 1.766 0.275 -0.292

1979 4.448 0.458 -0.272 -5.535 0.388 0.140

1980 8.752 1.065 -0.240 -1.316 0.499 0.146 2.764 0.220 -0.616

1981 -3.922 0.706 -0.039 0.747 0.591 0.186 3.217 0.854 0.554

1982 5.275 1.270 0.610 4.588 0.566 -0.325 1.635 0.629 1.542

1983 6.128 0.692 -0.009 12.945 0.803 0.090 8.092 0.391 0.732

1984 0.533 0.625 0.805 2.257 0.566 -0.228 5.906 0.546 -0.386

1985 8.956 0.394 0.453 19.517 0.885 -0.244 4.800 0.338 -1.048

1986 5.228 0.838 -0.982 1.808 1.674 0.133 13.932 0.829 -0.423

1987 0.769 4.362 -5.081 -13.764 3.445 -0.969 5.213 2.887 -2.940

1987� 7.930 1.824 -1.138 -9.108 2.819 -0.560 8.427 1.572 -0.403

1988 4.479 1.131 -1.054 10.865 1.388 0.174 12.853 0.540 1.176

1989 9.269 0.665 -1.840 11.494 1.688 -4.125 9.805 0.290 0.179

1990 -2.599 0.980 -0.171 -9.472 2.371 0.148 -18.761 3.971 0.836

1991 8.948 0.784 0.190 4.634 1.566 -1.087 -1.415 1.676 -0.056

1992 1.667 0.360 0.055 -0.805 0.779 0.115 -11.679 3.358 0.443

1993 2.612 0.285 -0.178 14.684 0.719 0.174 1.099 1.569 0.257

1994 -0.597 0.373 -0.298 -2.817 1.087 -0.201 4.782 1.198 0.896

1995 11.288 0.234 -0.051 2.600 0.661 -0.455 0.282 1.954 0.111

1996 7.043 0.536 -0.616 9.471 0.624 -0.852 -0.986 0.920 0.031

1997 10.348 1.271 -0.682 14.791 2.228 -0.968 -9.124 2.905 0.028

All 2.954 0.849 -2.084 3.931 1.068 -0.834 1.997 1.309 -0.202

All� 3.198 0.761 -0.197 4.145 1.038 -0.700 2.156 1.242 0.279

� Excluding the week October 15, 1987 to October 22, 1987.



Table 2

A. Summary statistics for daily returns by day of the week

This table presents summary statistics for continuously compounded value-weighted returns on
S&P500 index (U.S.) from January 4, 1969 to December 31, 1997, a total of 7566 observations, on
DAX 30 Index (Germany) from January 4, 1975 to December 31, 1997, a total of 6000 observations,
and on Nikkei 225 (Japan) from January 4, 1980 to December 31, 1997, a total of 4694 observations,
The returns are broken down by day of the week.

U.S. Germany Japan

Day Mean �104 Var�104 Skew Mean �104 Var�104 Skew Mean �104 Var�104 Skew

Mon -5.940 1.263 -6.052 -6.692 1.512 -2.242 -6.434 1.770 -0.132

Mon� -4.434 0.920 -0.915 -5.875 1.433 -1.995 -5.712 1.630 -0.149

Tue 4.972 0.783 0.543 2.589 1.101 -0.557 -0.957 1.514 -1.307

Wed 8.651 0.743 0.987 8.706 1.003 0.178 10.071 1.329 0.367

Thu 1.204 0.707 -0.005 5.476 0.874 0.311 5.452 1.132 0.179

Fri 5.875 0.738 -0.705 9.570 0.834 -0.041 0.833 1.220 0.358

B. Summary statistics for daily returns by month

This table presents summary statistics for continuously compounded value-weighted returns on
S&P500 index (U.S.) from January 4, 1969 to December 31, 1997, a total of 7566 observations, on
DAX 30 Index (Germany) from January 4, 1975 to December 31, 1997, a total of 6000 observations,
and on Nikkei 225 (Japan) from January 4, 1980 to December 31, 1997, a total of 4694 observations,
The returns are broken down by month.

U.S. Germany Japan

Month Mean �104 Var�104 Skew Mean �104 Var�104 Skew Mean �104 Var�104 Skew

Jan 8.057 0.850 -0.609 4.232 1.320 0.391 8.556 1.508 0.404

Feb 2.037 0.622 -0.117 10.189 0.953 0.013 -0.435 0.826 -0.574

Mar 2.822 0.620 -0.270 5.827 0.867 0.093 3.996 1.254 0.049

Apr 4.048 0.691 -0.075 5.809 0.689 -0.22 10.644 1.558 -0.142

May 2.940 0.690 0.308 -0.877 0.711 -0.057 4.752 0.888 -0.096

Jun 1.866 0.576 0.058 6.848 0.661 -0.342 -6.074 0.889 -0.455

Jul 1.650 0.608 -0.066 10.305 0.875 -0.147 1.292 1.191 0.314

Aug 3.166 0.859 0.571 0.061 1.288 -1.497 1.323 1.706 -0.103

Sep -3.273 0.801 -0.038 -4.413 0.931 -0.178 -6.287 1.239 -0.15

Oct 0.137 2.280 -5.459 -2.792 2.494 -2.055 -0.235 2.626 -0.993

Oct� 3.005 1.249 -0.872 -0.317 2.163 -1.939 1.079 1.616 2.011

Nov 4.617 0.861 -0.294 4.739 1.209 -0.154 -0.717 1.669 0.362

Dec 7.143 0.695 -0.036 7.714 0.774 -0.172 4.182 1.337 -0.108

� Excluding the week October 15, 1987 to October 22, 1987.



Table 3

Model for U.S. daily returns

This table presents the results for three models for the conditional mean, conditional variance and
conditional skewness for U.S. daily returns. The sample includes continuously compounded value-
weighted returns on S&P500 index from January 4, 1969 to December 31, 1997, a total of 7566
observations.

rt = �0 + �1Vart�1(�t) + �t

GARCH Speci�cation: ht = �0 + �1ht�1 + �2�
2
t�1 + �3MONt + ��2t�1It

EGARCH Speci�cation: Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3MONt + �
�t�1p
ht�1

It Ht�1 = log(ht�1)

It = 1 if �t�1 > 0 and 0 otherwise.

MON= 1 if t is a Monday and 0 else.

st = 0 + 1st�1 + 2�
3
t�1

Model GARCH EGARCH Noncentral t

Parameter Estimate Estimate Estimate

t-statistic t-statistic t-statistic

Mean �0 0.000��� 0.000� 0.000
2.88 1.77 0.00

Equation �1 0.882 0.787 -0.092
0.64 0.39 -0.87

�0 0.000 -0.291��� 0.000
1.44 -9.84 0.00

�1 0.924��� 0.984��� 0.517���
364.37 375.66 2.52

Variance �2 0.094��� -0.176��� 0.215
Equation 18.54 -15.89 0.22

�3 0.000 0.242��� 1.98
1.58 4.55 0.000

� -0.063��� 0.246��� -0.012
-9.34 14.18 -1.01

0 0.000
0.00

Skewness 1 -0.652���

Equation -3.65

2 -0.015
-0.06

Likelihood 25696 25710 27687

The t-statistics are reported with � denoting signi�cance at 10%, �� denoting signi�cance at 5%,
and ��� denoting signi�cance at 1%.



Table 4

Model for German daily returns

This table presents the results for three models for the conditional mean, conditional variance and
conditional skewness for German daily returns. The sample includes continuously compounded
value-weighted returns on DAX 30 index from January 4, 1975 to December 31, 1997, a total of
6000 observations.

rt = �0 + �1Vart�1(�t) + �t

GARCH Speci�cation: ht = �0 + �1ht�1 + �2�
2
t�1 + �3MONt + ��2t�1It

EGARCH Speci�cation: Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3MONt + �
�t�1p
ht�1

It Ht�1 = log(ht�1)

It = 1 if �t�1 > 0 and 0 otherwise.

MON= 1 if t is a Monday and 0 else.

st = 0 + 1st�1 + 2�
3
t�1

Model GARCH EGARCH Noncentral t

Parameter Estimate Estimate Estimate

t-statistic t-statistic t-statistic

�0 � 1000 -0.163� 0.336 -21.721���
Mean 0.00 1.87 -166.55

Equation �1 7.270��� 0.884 0.138���
7.28 0.42 143.21

�0 � 1000 0.000 -470.297��� 70.673���
0.00 -10.23 101.11

�1 0.844 0.977��� 0.662���
0.85 239.00 149.25

Variance �2 0.146 -0.208��� 0.000
Equation 0.15 -13.34 0.00

�3 0.000 0.643��� -0.004���
0.00 10.95 -9.43

� -0.060 0.339��� 0.740���
-0.06 12.53 2.52

0 -0.329���
-31.81

Skewness 1 -0.627���

Equation -10.01

2 0.003
0.00

Likelihood 18456 18678 19753

The t-statistics are reported with � denoting signi�cance at 10%, �� denoting signi�cance at 5%,
and ��� denoting signi�cance at 1%.



Table 5

Model for Japanese daily returns

This table presents the results for three models for the conditional mean, conditional variance and
conditional skewness for Japanese daily returns. The sample includes continuously compounded
value-weighted returns on Nikkei 225 index from January 4, 1980 to December 31, 1997, a total of
4694 observations.

rt = �0 + �1Vart�1(�t) + �t

GARCH Speci�cation: ht = �0 + �1ht�1 + �2�
2
t�1 + �3MONt + ��2t�1It

EGARCH Speci�cation: Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3MONt + �
�t�1p
ht�1

It Ht�1 = log(ht�1)

It = 1 if �t�1 > 0 and 0 otherwise.

MON= 1 if t is a Monday and 0 else.

st = 0 + 1st�1 + 2�
3
t�1

Model GARCH EGARCH Noncentral t

Parameter Estimate Estimate Estimate

t-statistic t-statistic t-statistic

�0 � 1000 0.280� 0.430��� -0.052
Mean 1.92 6.39 0.00

Equation �1 2.052� -0.508��� 0.246
1.76 -5.01 1.25

�0 � 1000 0.000 -514.540��� 0.888
0.00 -18.34 0.00

�1 0.756��� 0.974��� 0.669���
67.40 380.02 11.99

Variance �2 0.238��� -0.355��� 0.340���

Equation 17.51 -20.11 3.40

�3 0.000��� 0.499��� -0.001
9.25 8.33 -.08

� -0.243��� 0.479��� 1.159
-14.34 17.95 1.59

0 0.000���
-11.77

Skewness 1 -0.384���

Equation -2.82

2 0.277��
2.17

Likelihood 18767 18656 19453

The t-statistics are reported with � denoting signi�cance at 10%, �� denoting signi�cance at 5%,
and ��� denoting signi�cance at 1%.



Table 6

Model for U.S. monthly returns

This table presents the results for three models for the conditional mean, conditional variance and
conditional skewness for U.S. returns. The sample includes value-weighted returns on the NYSE
index from 1951 April to 1995 December, a total of 537 observations.

rt = �0 + �1Vart�1(�t) + �t

�t = (1 + �1OCT � �2JAN)�t

GARCH Speci�cation: ht = �0 + �1ht�1 + �2�
2
t�1 + �3Rf;t + ��2t�1It

EGARCH Speci�cation: Ht = �0 + �1Ht�1 + �2
�t�1p
ht�1

+ �3Rf;t + �
�t�1p
ht�1

It Ht�1 = log(ht�1)

It = 1 if �t�1 > 0 and 0 otherwise

st = 0 + 1st�1 + 2�
3
t�1

Model GARCH GARCH EGARCH Noncentral t Noncentral t

Parameter Estimate Estimate Estimate Estimate Estimate
t-statistic t-statistic t-statistic t-statistic t-statistic

�0 � 1000 14.781��� 3.577�� 3.336�� 7.693��� 7.313���
3.83 2.27 2.10 611.30 2.59

Mean �1 -7.459��� 0.000 0.024 -0.239��� 1.174
Equation -2.82 -0.02 0.11 -11.66 0.56

�1 141.920 16.586 -0.125��� -0.126���
0.05 0.39 -84.42 -8.86

�2 -368.607 -34.624 0.263��� 0.266���
-0.09 -0.22 31.43 19.97

�0 � 1000 0.285�� 0.414��� -4.733��� 0.515��� 0.985�
2.14 2.52 -3.93 27.14 1.92

�1 0.371 0.574�� 0.547�� 0.466��� 0.381���
1.40 2.08 2.00 17.28 3.45

Variance �2 0.173�� 0.198��� -0.324��� 0.069��� 0.005
Equation 2.22 2.65 -3.21 7.22 0.23

�3 0.157�� 0.053��� 58.567��� 0.050��� 0.115���
2.07 2.37 2.74 11.55 2.95

� -0.239��� -0.262��� 0.097 -0.013
-2.94 -3.22 0.48 -1.14

0 � 1000 -0.028��� -0.033���
-18.02 -2.81

Skewness 1 -0.432��� -0.283�

Equation -27.46 -1.76

2 -0.005 � -0.006
-1.82 -1.00

Likelihood 1178 1256 1231 1301 1298

The t-statistics are reported with � denoting signi�cance at 10%, �� denoting signi�cance at 5%,
and ��� denoting signi�cance at 1%.



Table 7

Speci�cation tests for the GARCHS(1,1,1)-M model

We carry out conditional moment tests of the GARCH(1,1)-M and GARCHS(1,1,1)-M model using the

methodology presented in Nelson (1991). Using the standardized residuals from the estimated model we

construct 16 orthogonality conditions. The �rst four should hold for the �rst four moments. The conditions

following test the serial correlations in the mean, variance and skewness. We apply this model to the monthly

returns on the value-weighted NYSE/AMEX index. The t-statistic are computed using the sample averages.

We also compute a �2 statistic with all 16 orthogonality conditions.

Orthogonality Condition GARCH(1,1)-M GARCHS(1,1,1)-M

Sample Average t-statistic Sample Average t-statistic

1 E

h
Ẑt

i
= 0 0.003 -0.006 0.002 0.045

2 E

h
Ẑ2
t � 1

i
= 0 0.004 0.584 0.009 -0.996

3 E

�
Ẑ
3

t

Ẑ

3

2

t

� 3

�
= 0 -1.321 -2.560 0.121 0.121

4 E
h
Ẑ
4

t

Ẑ2

t

� 0
i

= 0 0.993 0.996 0.993 0.996

5 E
h
ẐtẐt�1

i
= 0 0.000 -0.005 0.000 0.065

6 E
h
ẐtẐt�2

i
= 0 0.000 -0.059 0.000 -0.028

7 E

h
ẐtẐt�3

i
= 0 0.000 -0.008 0.000 0.011

8 E

h
ẐtẐt�4

i
= 0 0.000 0.019 0.000 0.017

9 E

h
(Ẑ2

t � 1)(Ẑ2
t�1 � 1)

i
= 0 0.989 0.996 0.989 0.996

10 E

h
(Ẑ2

t � 1)(Ẑ2
t�2 � 1)

i
= 0 0.989 0.996 0.989 0.996

11 E

h
(Ẑ2

t � 1)(Ẑ2
t�3 � 1)

i
= 0 0.989 0.996 0.989 0.996

12 E

h
(Ẑ2

t � 1)(Ẑ2
t�4 � 1)

i
= 0 0.989 0.996 0.989 0.996

13 E

h
(Ẑ3

t )(Ẑ
3
t�1)

i
= 0 -0.312 -2.089 0.000 0.026

14 E

h
(Ẑ3

t )(Ẑ
3
t�2)

i
= 0 0.003 -0.054 0.000 -0.058

15 E

h
(Ẑ3

t )(Ẑ
3
t�3)

i
= 0 0.000 0.022 0.000 0.029

16 E

h
(Ẑ3

t )(Ẑ
3
t�4)

i
= 0 0.000 -0.068 0.000 -0.060

�2 � = 27.12 (p-value=0.040) �2 � = 23.00 (p-value=0.113)

�Excluding the months of September, October and November 1987, the �2 statistic for GARCHS(1,1,1)-M
has a value of 22.93 and a p-value of 0.115.



Table 8

Actual versus prediced variances: the Crash of 1987

The following table compares the predicted variances from three models to the actual squared residuals for

the period April 1987 to March 1988 for the value-weighted NYSE index returns. RESID2 is the squared

residual computed using the unconditional mean of the returns. NCT is the conditional variance prediction

using the GARCHS(1,1,1) model. GJR is the GARCH(1,1)-M speci�cation in Glosten, Jagannathan, and

Runkle (1993) with dummies for January and October. EGARCH is a EGARCH(1,1)-M speci�cation with

dummies for January and October.

Month RESID2 NCT GJR EGARCH

April 0.90 1.31 0.35 1.08
May 0.00 1.54 0.40 1.55
June 1.20 1.63 0.38 1.46
July 1.30 1.60 0.35 1.09
August 0.80 1.58 0.34 0.95
September 1.20 1.59 0.34 0.94
October 85.50 1.40 0.45 1.80
November 9.20 9.56 0.38 1.45
December 4.00 5.97 0.88 2.91
January 1.60 1.82 0.45 1.17
February 1.60 2.32 0.40 1.25
March 0.90 1.89 0.34 0.97



Figure 1: Monthly skewness of S&P500 returns
computed using daily returns

The two dotted lines represent one standard deviation above and
one standard deviation below average monthly skewness over the period
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B. Plot of annual skewnesses

The skewnesses are computed from weekly IFC index returns.
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Figure 3
A. Plot of annualized volatilities

The volatilities are computed from weekly IFC index returns.
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Notes

1Our choice of a simple speci�cation is also consistent with the results in Nelson (1992)

that misspeci�cation has little inuence on the estimated conditional variance. We have used

more instruments as well, and our conclusions about persistence and asymmetry are not

a�ected. However, the inclusion of instruments does a�ect the relation between return and

variance. Engle and Gonzalez-Rivera (1991) and Gray (1996) use semi-parametric ARCH

speci�cations for conditional mean and variance.

2An alternative method of introducing skewness in the distribution of returns would be

to use a mixture of two normal distributions or mixture of two t distributions. These are

the \SPARCH" models. The major drawback in using a SPARCH model is that the choice

of a weighting scheme between the two distributions is somewhat arbitrary. An alternative

parameterization of the noncentral-t distribution was proposed by Hansen (1994) where it

was applied in modeling the term-structure of interest rates.

3We have also used an alternative speci�cation for conditional skewness without an in-

tercept, in e�ect forcing 1 to be the same as unconditional skewness.

4We can also accommodate kurtosis by incorporating a dynamic equation for time-varying

kurtosis

5 We have also estimated a GARCH(1,1)-M-t model, i.e. assuming that the returns are

from a conditional t distribution. The degrees of freedom is the additional parameter in this

model. The t-distribution accommodates the thick tails of the data but does not permit

skewness.

6An alternative test of an autoregressive conditional skewness model can be constructed

in the Newey (1987) generalized method of moments framework. For this we specify the

following models for conditional mean, variance and skewness:

rt = �0 + �1ht�1

ht = �0 + �1e
2
t�1 + �2e

2
t�2 + �3e

2
t�3 + �4e

2
t�4 + �5e

2
t�5 (i)

st = 0 + 1e
3

t�1 + 2e
3

t�2 + 3e
3

t�3 + 4e
3

t�4 + 5e
3

t�5

These speci�cations are ARCH(5) for variance and skewness. We estimate this model for



daily returns on the S&P500 in a method of moments framework using the lagged score

functions upto lag 4 as instruments. The system is exactly identi�ed and Hansen's J test

gives us a �2 statistic of 0.192 which fails to reject the null at a p-value of 0.67. The

conditional moments test-statistic is distributed as a �2 with 6 degrees of freedom, using

three instruments to multiply the residuals in (i). We fail to reject that the model is correctly

speci�ed.

7We are grateful for the detailed suggestions Doug Steigerwald on this point.


