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Executive Summary Many practical problems in modern finance require an under-
standing of the volatility and correlations of asset returns. Ex-
amples of such everyday problems include managing the risk of a
multi-currency portfolio, optimal asset allocation, and derivatives
pricing.

Unfortunately for practitioners, volatility and correlation (or the
covariance matrix) cannot be directly observed, and must be es-
timated from data on daily returns. Thus, how the covariance
matrix is estimated can have important implications for the
practice of modern finance. We provide examples to illustrate
how many practical decisions are influenced by the covariance
matrix choice.

Since the covariance matrix must be estimated, the practitioner
faces an interesting trade-off between using estimation methods
that most closely resemble real-world phenomena and using es-
timation methods that are not computationally burdensome. This
trade-off is intensified for larger covariance matrices, which
stand at the core of many risk management and asset allocation
problems.

In this paper, we discuss the covariance matrix estimation meth-
ods used at Goldman Sachs for large-scale risk management and
asset allocation problems. We describe how the methods used at
Goldman Sachs account for several regularities commonly ob-
served in financial data. In this context, we show how these
methods offer an improvement on the assumption that returns
are generated by a stable Normal distribution. We also contrast
the methods used at Goldman Sachs with other commonly used
approaches.

Covariance matrix estimation can easily be regarded as a topic
that will never be closed. In that spirit, we also offer several sug-
gestions for future research, on the premise that a deeper under-
standing of the covariance matrix can lead to improved practical
decision making.
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Estimating Covariance Matrices

I. Introduction Investors take on risk in order to generate higher expected
returns. This trade-off implies that an investor must bal-
ance the return contribution of each investment against its
contribution to portfolio risk. Central to achieving this bal-
ance is some measure of the correlation of each invest-
ment’s returns with those of the portfolio. This problem,
along with many of the other practical problems in modern
finance, requires measures of volatility and correlation.
Other examples of such problems include estimating the
risk of a portfolio of positions, determining optimal hedges,
pricing derivatives, identifying optimal weights for a trade,
and finding the optimal asset allocation for a portfolio.

Although the daily practice of finance uses volatility and
correlation (or, more precisely, the covariance matrix) of as-
set returns as inputs, these quantities cannot be directly
observed and must instead be estimated, generally from
historical observations on financial assets returns.1 Since
different estimation procedures can give rise to different co-
variance matrices, the choice of estimation method becomes
critical. Many financial market participants, recognizing
the uncertainty in covariance estimation, have given up on
the hope of making informed decisions based on this type of
information. But we believe there is no choice. Every deci-
sion in finance, as in life, requires that people make choices
under conditions of uncertainty. The only issue is whether
they make the decisions with more information or with less.
For many financial decisions, the relevant information is an
estimate of covariances over a future horizon.

To illustrate the role of the covariance matrix in a bit more
detail, suppose that we are managing a global government
bond trading book. For simplicity, we will assume that the
book will take long and short positions in 10-year bonds in
the following 10 markets: Canada, France, Germany, Italy,
Japan, the Netherlands, Spain, Sweden, the United King-
dom, and the United States. Exhibit 1 presents a summary
of these positions.

                                               
1 We address the role of implied volatilities in more detail in Section

IV.
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From a risk management perspective, there are several im-
portant questions that we would like to address about this
portfolio:

• First, we would like to know the overall risk of the port-
folio (a question that in principle can be answered with
a time series of portfolio returns).

• Second, we would like to know each position’s contribu-
tion to the overall risk.

• Third, we would like to identify hedges that make the
portfolio neutral with respect to market moves.

• Finally, we would like to identify the portfolio’s “implied
views.”2 Each of these issues depends on the volatility
and correlation of asset returns for all assets in the
portfolio.

Exhibit 2 contrasts the risk and risk decomposition of
this portfolio using covariance matrices estimated with
two alternative methods. The figures in the middle col-
umn are derived from the covariance matrix used in the
Goldman Sachs risk management system as of December

                                               
2 For further discussion of these topics, please see Litterman (1996)

and Litterman and Winkelmann (1996). [Note: Full reference infor-
mation on sources mentioned in this report appears in the Bibliogra-
phy, page 43.]

Exhibit 1

Government Bond Trading Positions
(10-Year Bonds; US$, millions)

Market Position
Canada 100
France 150
Germany -500
Italy 100
Japan 60
Netherlands -100
Spain 100
Sweden 150
U.K. 175
U.S. -175
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31, 1996.3 By contrast, the figures in the right-hand column
are derived from nine years of monthly returns.

Exhibit 2 shows that measurement of risk and identifica-
tion of the primary sources of risk in the portfolio depend on
which covariance matrix is used. For example, the Value-at-
Risk (VaR), measuring the amount of capital that would be
expected to be lost once in 100 two-week intervals, in-
creases from $1.64 million when we use the Goldman Sachs
risk system covariance matrix to $2.41 million when we use
monthly data. Furthermore, the primary source of risk
changes from the German 10-year bond position to the
Swedish 10-year bond position. (Appendix A, page 41, pres-
ents both covariance matrices.)

Covariance matrix estimation is also important for the as-
set allocation problem. Conventional wisdom holds that
good expected return forecasts will overpower the effects of
any errors in risk measurement (i.e., the covariance ma-
trix). However, the following example provides an interest-

                                               
3 Goldman Sachs takes many different approaches to managing its

risk. We start by using a covariance matrix estimated with decayed
daily data to find VaR. Our covariance matrix estimation employs the
procedures discussed in this paper. In particular, we use a decay rate
that is consistent with a two-week rebalancing horizon. In addition to
a covariance matrix, we also use historical simulation and Monte
Carlo simulation for risk management purposes. No one approach is
“best” or “correct”: each provides a unique set of insights into risk.

Exhibit 2

VaR and Risk Decomposition

GS Risk System Monthly Data
Market Risk (%) Risk (%)

Canada -2.49 5.35
France 6.25 7.01
Germany 20.37 6.07
Italy 15.19 18.65
Japan 2.64 1.07
Netherlands -0.73 -2.32
Spain 13.67 18.78
Sweden 19.89 25.40
U.K. 6.43 15.11
U.S. 18.77 4.87
VaR $1.64 million $2.41 million
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ing illustration of the performance effects of more or less
accurate covariance matrices.

This example simulates the performance from January
1992 through March 1997 of two fund managers who hold
identical views on expected returns, but who use different
covariance matrices. Each manager selects an optimal port-
folio against a currency-hedged, capitalization-weighted
benchmark consisting of U.S., German, and Japanese
bonds. We have chosen deviations from the benchmark
weights to give a predicted tracking error of 100 basis
points, and we assume that each manager rebalances quar-
terly. Thus, there are 21 separate rebalancings.

Of course, deviations from the benchmark allocations are
driven by views on expected returns and the covariance
matrix. For simplicity, suppose that each manager’s quar-
terly expected return projections are centered at that quar-
ter’s actual returns.4 The manager-specific covariance
matrices at each quarterly rebalancing are created as fol-
lows: for manager A, the covariance matrix includes only
the data for the returns in the upcoming quarter. For man-
ager B, the covariance matrix uses equally weighted weekly
data from January 1991, but rather than including all of
the upcoming quarter’s returns, the covariance matrix for
each date uses only data that could be known at the time of
rebalancing. How well does each manager perform?

Portfolio managers are often judged by their “information
ratio,” i.e., the ratio of their excess return to their actual
tracking error. We can compute information ratios for each
manager by first finding the average performance relative
to the index, and then finding the standard deviation of the
relative performance. We will call this second quantity the
actual tracking error. Taking the ratio of the actual average

                                               
4 The quarterly excess returns (in percent) for the Goldman Sachs

German Government Bond index from January 1, 1992 through
March 31, 1997, were: .-0.20, -0.60, 1.82, 1.67, 2.25, .21, 1.75, 2.24,
-3.04, -2.16, -1.62, 0.27, 3.26, 1.20, 2.62, 3.31, -0.81, 0.20, 2.55, 1.66,
-0.05. Similarly, the quarterly excess returns for the Goldman Sachs
Japan Government Bond Index over the same period were: 1.16, 1.38,
3.89, 1.65, 1.54, 0.72, 4.60, 4.29, -4.17, -0.23, -0.38, 0.77, 5.68, 4.85,
1.26, -0.10, 0.10, 0.60, 2.65, 1.92, 2.10. Finally, the corresponding ex-
cess returns to the Goldman Sachs U.S. Government Bond Index
were: -2.83, 2.97, 4.20, -0.87, 3.82, 2.15, 2.52, -1.15, -3.92, -2.04, -0.77,
-1.01, 3.32, 4.79, 0.34, 3.23, -3.70, -0.96, 0.21, 1.51, -2.29.
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performance to the actual tracking error produces each
manager’s information ratio.

The performance differences between the two managers on
this dimension are quite striking. On average, each man-
ager outperforms the benchmark by roughly 59 basis points
(bp) per quarter. However, while manager A has an actual
quarterly tracking error of 60 bp (or 60 × 4  = 120 bp on an
annualized basis), manager B has a quarterly tracking er-
ror of 69 bp (or 138 bp annualized). The information ratio of
manager A is 0.98, 14% better than manager B’s informa-
tion ratio, which is 0.86. Since the managers are identical
in all respects except the covariance matrix, it must be the
case that the performance differences are a consequence of
the choice of covariance matrix. Contrary to the presump-
tion of conventional wisdom, covariance matrix estimation
is as relevant for fund management as expected return
forecasting. Indeed, covariance matrix estimation can be
easily viewed as a forecasting problem in its own right:
Rather than forecasting a portfolio’s central tendency
(expected return), a covariance matrix is essential for fore-
casting the range of possible performance outcomes.

This paper discusses the covariance matrix estimation
methods used at Goldman Sachs for large-scale risk man-
agement and asset allocation problems. We try to produce
covariance matrices that are consistent with the regulari-
ties that are observed in financial data and that form the
basis for forecasting future volatilities and correlations.
Also, we rely on algorithms that are easy to compute and
can be easily understood and compared with alternative
estimation methods.

We do not believe there is one optimally estimated
covariance matrix. Rather, we use approaches designed to
balance trade-offs along several dimensions and choose
parameters that make sense for the task at hand. One
important trade-off arises from the desire to track time-
varying volatilities, which must be balanced against the
imprecision that results from using only recent data. This
balance is very different when the investment horizon is
short, for example a few weeks, versus when it is longer,
such as a quarter or a year. Another trade-off arises from
the desire to extract as much information from the data as
possible, which argues toward measuring returns over
short intervals. This desire must be balanced against the
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reality that the structure of volatility and correlation is not
stable and may be contaminated by mean-reverting noise
over very short intervals, such as intraday or even daily
returns.

The paper is organized as follows: The next section (Section
II) reviews regularities that are commonly found in finan-
cial time series. Section III presents the covariance matrix
estimation framework used at Goldman Sachs, while Sec-
tion IV contrasts our methods with other frequently used
techniques. We discuss the relationship between covariance
matrices and structural models in Section V, and offer some
concluding comments in Section VI.

II. Empirical Regularities
in Financial Data

Unfortunately, a common yardstick for discussing regulari-
ties in financial time series is the multivariate Normal dis-
tribution. If asset returns followed a constant multivariate
Normal distribution 24 hours a day, the following regulari-
ties should be observed: First, the volatility of each asset’s
daily return would be roughly constant over time. Second,
the correlation of asset returns would also be approximately
constant across time. Finally, asset returns would not be
“fat-tailed.” In other words, approximately 66% of the ob-
served daily returns would be within one standard devia-
tion of the average return, and roughly 95% of the observed
daily returns would be within two standard deviations of
the average return. As we will see below, asset returns, for
the most part, do not conform at all well to this yardstick.
Volatilities and correlations are time-varying, and the dis-
tributions of asset returns are fat-tailed.

Volatility Is Time-Varying Exhibit 3 shows two estimates of the annualized daily
volatility for excess returns on the S&P 500 index from
January 1, 1992, through December 31, 1996. (We measure
daily excess returns as the total return to the S&P 500 less
returns to cash.) The first estimate uses the entire history,
and weights each day’s return equally. Using this method,
we estimate S&P 500 index volatility to have been 10.88%,
as represented in the chart by the horizontal line at
10.88%.
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The second method illustrated in Exhibit 3 follows a com-
mon industry practice of calculating volatility through a
rolling window of history. With this method, volatility is
calculated as the standard deviation of a fixed period of his-
torical daily returns. Since the period (or “window”) is fixed,
as a new day is added to the window the most distant day
in the window is deleted. In Exhibit 3, the window is fixed
at 100 days. As the chart illustrates, a rolling window pro-
vides volatility estimates that are far from constant: Over
the period illustrated, volatility appears to have fluctuated
between 5.75% and 13.70%.

Of course, our inferences on time-varying volatility could in
part be due to our small sample sizes and the nature of the
rolling window. For example, suppose that the first day in
the sample is an extraordinarily large observation. Suppose
further that the observation that we add is a relatively
small observation. Over a two-day period, the volatility es-
timate will drop as the small observation replaces the rela-
tively high observation. Consequently, even if the distribution
is stable and Normal, we should still see some time varia-
tion in the volatility estimates because of the small sample
sizes.

A simple Monte Carlo simulation can address the issue of
whether our observed time-varying volatility is due to a
shift in distribution or merely to small samples. We can do

Exhibit 3

S&P 500 Index Volatility

Annualized Volatility
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this by sampling 1,000 “paths” of 1,250 observations each
(i.e. 1,000 “paths” of five years of daily returns), comparing
the results of our simulation with actual experience. To set
up the simulation, suppose that we assume that the distri-
bution is Normal, with a mean of zero and a volatility of
10.88%. More specifically, we can simulate a time series of
volatility, estimated with a 100-day rolling window over a
five-year period, by drawing 1,250 observations from this
distribution and then calculating the standard deviations
over overlapping intervals of 100 observations. Each suc-
cessive interval adds one new observation and deletes an
old observation. For the simulated volatility time series, we
can calculate the average absolute deviation between the
simulated volatility and the “true” volatility (which in our
case we take to be 10.88%). We can then calculate the dis-
tribution of the average absolute deviation between the
simulated volatilities and the “true” volatility by taking re-
peated samples of size 1,250. In this case, we sampled
1,000 separate “time series,” getting a mean absolute de-
viation of 0.61%, with a standard deviation of 0.10%. In
other words, even when the distribution of returns is a
stable Normal distribution, estimating volatility with a
100-day rolling window will give an average deviation from
10.88% of 0.61%. The largest average absolute deviation for
a single 1,250-observation sample in our simulation was
1.08%.

Now, how does the actual history of the S&P 500 compare
with the Monte Carlo simulation? We can easily compare
the two by calculating the average absolute difference be-
tween the actual 100-day rolling window and the long-term
historical average, and then finding the average of the re-
sulting time series. This calculation shows that the average
absolute difference is 1.87%, with a standard deviation of
1.23%. These figures do not compare especially favorably
with our simulated distribution. In fact, since the largest
average absolute deviation in our simulation was 1.08%,
and since we ran 1,000 simulations, we can conclude that
there is less than a 0.001 chance that the actual rolling
window would have been observed if the true distribution
were a stable Normal distribution with a 10.88% volatility.
Consequently, it is hard not to reject the hypothesis that
S&P 500 returns are characterized by a distribution with
constant volatility.
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Correlations Also Vary
Over Time

The yardstick of a stable multivariate Normal distribution
also predicts that correlations will not vary over time (in
addition to predicting that volatility is not time-varying).
Exhibit 4 explores this proposition by plotting two esti-
mates of the correlation between French and German 10-
year bond returns. We calculate correlations in the chart
using daily currency-hedged excess returns on French and
German 10-year bonds from January 1, 1992, through De-
cember 31, 1996.

Similar to Exhibit 3, the first estimate of correlation uses
the entire history and assigns an equal weight to each daily
return. With this procedure, we estimate the correlation be-
tween French and German 10-year bond returns to be 0.57;
it is represented in Exhibit 4 by the horizontal line. We con-
trast the constant correlation estimate with correlations
estimated using a 100-day rolling window. Under the sec-
ond approach, the correlation between French and German
10-year bond returns ranges between 0.37 and 0.82. As
with Exhibit 3, it is reasonable to ask whether the data in
Exhibit 4 reflect a small sample or a distribution of returns
that is time-varying. Once again, we can answer this ques-
tion by looking at a Monte Carlo simulation. Rather than
assume that the volatility is 10.88%, we assume that the
correlation between French and German bond returns is
drawn from a distribution with a stable correlation of 0.57,
and then follow the same procedure to simulate the distri-
bution of the average absolute deviations. This time, the
mean of the average absolute deviations is 0.0542 and the
standard deviation is 0.0090. In other words, when the true

Exhibit 4

France/Germany 10-Year Bond
Correlation

Daily Correlation
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correlation is 0.57, a five-year rolling window of 100-day
correlations will, on average, produce a deviation of 0.0542
from the true correlation of 0.57. The largest average abso-
lute deviation in the simulation is 0.1081.

Once again, we can calculate the average absolute devia-
tion for the actual time series of French/German bond cor-
relations. In this case, the average absolute deviation is
0.1243, with a standard deviation of 0.0678. Again, the ac-
tual absolute average deviation is larger than the largest
simulated deviation, which suggests that there is less than
a 0.001 chance of observing this time series of correlations
if the distribution of French and German bond returns is
truly generated by a stable Normal distribution. As in the
case of S&P 500 volatility, this example illustrates the fact
that it is hard not to reject the hypothesis that correlations
are constant over time.

Financial Data
Have ‘Fat Tails’

The final prediction of the multivariate Normal yardstick is
that financial time series do not have “fat tails.” To illus-
trate, we use daily returns; the “tails” of the distribution
refer to the percentage of observed daily returns that are
outside a fixed band, where the band is defined by the
overall volatility (as measured by the standard deviation).
When data follow a Normal distribution, 68.3% of the ob-
servations are within one standard deviation of the long-
term average, and 95.4% are within two standard devia-
tions of the long-term average. In this case, the tails of the
distribution refer to the 4.6% of the observations that are
more than two standard deviations away from the long-
term average; they represent observations that can occur but
with less frequency than other possibilities. A distribution
is said to have “fat tails” (relative to a Normal distribution)
when more than 4.6% of the observations are more than
two standard deviations away from the long-term average.
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For a practical example of fat tails, let’s look again at the
volatility of the S&P 500 index. We already saw that if we
use all the data from January 1, 1992, to December 31,
1996, the annualized volatility of daily excess returns
works out to be 10.88%. This figure is quite easily con-
verted to 0.68% daily excess return volatility. Consequently,
if there are 250 trading days in a year and if returns are
Normally distributed, we would anticipate around 11 days
a year when returns exceeded 1.37% in absolute value. In
addition, we would anticipate that returns would be within
-0.68% and +0.68% in 171 of the days.

Exhibit 5 revisits the experience of S&P 500 index returns
from January 1, 1992, through December 31, 1996. The
chart summarizes the return experience with a histogram.

Exhibit 5 summarizes 1,250 trading days. Over this period,
if daily returns are normally distributed, we would antici-
pate roughly 55 days when returns exceeded 1.37% in abso-
lute value and 855 days when returns were between -0.68%
and +0.68%. However, practical experience has been quite
different, as illustrated by Exhibit 5. Rather than 55 days
of returns outside two standard deviations, the practical
experience has been that S&P 500 index returns have had
65 days outside the two-standard-deviation range. Simi-
larly, over the five-year period there were 1,148 days of re-

Exhibit 5

Histogram of S&P 500 Returns
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turns within one standard deviation, rather than the 855
predicted by a Normal distribution. Even though the chart
does not provide a definitive test for fat tails, the results do
suggest that S&P 500 returns are indeed fat-tailed.

Should we be surprised that financial time series have fat
tails? Not really. The Normal distribution arises often in
nature, in particular whenever the total uncertainty in a
distribution is a sum of many independent sources. Unfor-
tunately this independence does not exist in financial mar-
kets. Most investors pay attention to the same economic
fundamentals. Large surprises are observed by all partici-
pants in the market at more or less the same time. In some
cases, the large surprise may be a market move itself, as
was the case in the equity market crash of October 19,
1987. As a consequence, it is not a surprise that actual se-
curities returns are fat-tailed.

III. Estimating the
Covariance Matrix

This section discusses the covariance matrix estimation
methods used at Goldman, Sachs & Co. Our methods use
historical data to account for the empirical regularities dis-
cussed in Section II. In estimating covariances, most ap-
proaches, including ours, amount to taking a weighted
average of products of past returns. For volatilities, the his-
torical returns of an asset are squared and averaged; for
correlations, the products of the returns of two assets are
averaged. The main choices are how to compute the histori-
cal returns and how to weight the products.5

To introduce a little formalism, let us suppose that itr  is the
daily return on the ith asset at date t and that tw  is the
weight applied at date t. Furthermore, suppose that the in-
vestment horizon is M days and that the variance of re-
turns of asset i at time T over the horizon M is denoted

ii
t Mσ ( ) . Assuming that mean returns are zero, our estima-

tor of ii
T Mσ ( )  is given as:

                                               
5 Computation of historical returns is also an important issue in esti-

mating the covariance matrix. For example, differences can arise
when total returns are used instead of excess returns (at Goldman
Sachs, we use excess returns). Differences can also arise when total
bond returns are approximated by the product of a bond’s duration
and the corresponding yield change.
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(1) ii
T Mσ ( ) = ( )∑

=
− −

s

T

T s iT sw r
0

2  / ( )∑
=

−
s

T

T sw
0

We can define an estimator of the covariance similarly. By
letting jtr  represent the return on asset j at date t, we can

write the covariance over the horizon M between itr  and jtr
at date T as:

(2) ij
T Mσ ( ) = ( )∑

=
− − −

s

T

T s iT s jT sw r r
0

 / ( )∑
=

−
s

T

T sw
0

Clearly, there are many possible choices for the weights tw .
For instance, if we choose to give equal weight to every ob-

servation in the sample, then tw
T

=
+

1

1
 for all T observa-

tions. At Goldman Sachs, however, we choose tw  to be a
declining function of time: We give more weight to observa-
tions that occurred more recently than to observations that
occurred in the more distant past. For example, if tw  is a
daily weight and 100% weight is given to the most recent
observation, then Tw = 1.0. Now suppose that each day
back in history receives 90% of the weight of the following
day. Then Tw = 1.0, Tw −1 = 0.90, Tw −2 = 0.81, etc. Weighting
data in this manner is also known as decaying data, and
[1- ( tw −1 / tw )] is called the decay rate. In our example, if
each day back in history receives 90% of the weight of the
day that follows it, then the decay rate is 10%.

Representing the variance and covariance as in equations
(1) and (2) raises a number of questions: First, what are the
differences between using daily data and sampling less fre-
quently? Second, what is the value in using declining
weights? Third, how is the decay rate chosen? Fourth, how
do the estimators in (1) and (2) address the empirical
regularities described in the previous section? Finally, what
is the relationship between the decay rate and the invest-
ment horizon (i.e., M)? We address each of these questions
in the discussion that follows.
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The approach we take at Goldman Sachs to alleviate some
of these effects on daily returns is to experiment with a pa-
rameter we call the overlap. Although wherever possible we
start with returns measured at least as often as daily, using
overlapped data with parameter k means that the returns
used in the covariance matrix are k-day overlapping re-
turns rather than one-day returns: For example, when k is
two, we use an average of two days’ returns. This averaging
of the returns reduces the impact of effects that persist for
only a short period. By experimenting with the overlap pa-
rameter, we can investigate the trade-off between the loss
of information that occurs when using returns sampled less
frequently and the contamination that occurs when using
returns sampled too frequently.

What Is the Best
Sampling Frequency?

In finance, we often use historical data to estimate mean
returns and the volatility of returns. Statisticians often re-
fer to these quantities as the first and second moments.
Such lumping together of these moments tends to hide a
fundamental difference in their estimation. Mean returns
are a function of the beginning and ending value of an as-
set. Knowing how the value changed from the start to the
end is irrelevant. Volatility, on the other hand, is all about
knowing how the value has changed. In fact, if you could
know enough values over any short time interval, you could
get as precise an estimate of volatility as you might want —
at least in theory. In practice, there are limits as to how
much information you can obtain from any price series, but
it is worth remembering the basic truth that measuring re-
turns over shorter intervals provides more information
about volatility. On the other hand, we have found that as
the return data are taken over shorter and shorter inter-
vals, problems with the quality of the data arise. Prices are
sometimes “noisy.” The price for a small transaction may
not reflect what would obtain for a transaction of larger
size. Over very short intervals, the price changes may re-
flect bid/offered spreads. Also, daily returns in different
time zones are not synchronous. Monday’s returns on Japa-
nese assets will reflect information revealed Friday in New
York, while Monday’s returns in New York may reflect in-
formation that is not revealed until after the Japanese
markets are closed on Monday. Finally, there are very sig-
nificant intraday changes in volatility reflecting, for exam-
ple, the release of economic data, the time of day, or trading
hours for futures exchanges.
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Exhibit 6 illustrates the differences that occur when differ-
ent values of the overlap parameter and different amounts
of data are used to estimate volatility. The charts plot time
series of rolling estimates for the volatility of excess returns
for the U.S. Treasury 10-year note from January 1, 1992,
through December 31, 1996. Each estimator uses a rolling
window of some period of data and equally weights all ob-
servations in the window. We show the effect of different
periods of data and different overlaps. The estimator based
on an overlap of 22 in effect uses monthly data, while the
estimator based on an overlap of 5 in effect uses weekly
data. We also show estimators based on overlap parameters
of 2 and 1 (which corresponds to daily data). We show esti-
mators using rolling windows of two, 12, and 24 months.

What is obvious in Exhibit 6 is that for long windows with
equally weighted observations, the overlap parameter does
not matter much. For short windows, the estimators based
on larger overlaps tend to be badly behaved; they are noisy
because the averaging involved in computing returns over
longer periods reduces the overall amount of information.

Rather than using equal weights, as in Exhibit 6, we usu-
ally use a decay factor. We do so because we feel that vola-
tilities and correlations tend to vary over time, and thus the
older the returns are at any time, the less relevant they are
for revealing what the covariance structure is at that time.
If we knew something about the process by which the co-
variance structure is changing, then we could perhaps more
carefully set the weights for older data. However, given the
large number of assets for which we want to compute
volatilities and correlations, we prefer the simpler, though
perhaps less exact, approach of searching over various de-
cay rates.
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Volatility Varies With Overlap and Window
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Using a decay rate can be deceptive. We may fool ourselves
into thinking we are using a long history of data. Even with
a rapid decay rate, we include lots of old data in our esti-
mator, but the problem is that the old data will get very
little weight. Thus, the effect of using a rapid decay rate is
very similar to that of using a short data window; the co-
variance estimator will be noisy. As we shall see, rapid de-
cay rates can easily lead to problems arising from not
having enough information to get well-behaved covariance
estimators. Just as in Exhibit 6, such a problem will be
compounded by having a larger overlap parameter.

How Can We Choose
Decay Rates?

Equations (1) and (2) show that variance and covariance
estimators depend on historical data and the decay rate. As
discussed, the choice of decay rate will influence the vari-
ance and covariance estimates. Consequently, we need an
objective to help us to choose between many different decay
rates. Ideally this objective would also be helpful in explor-
ing other issues, such as the relationship between the decay
rate and the investment horizon or the choice of distribu-
tional assumption. We will assume that our objective at any
time is to best explain the distribution of subsequent re-
turns. We prefer a decay rate for which the distribution is
most consistent with subsequent returns.

Statisticians give a name to a function that returns the
probability of an outcome; they call such a function a
“likelihood function.” We will define a likelihood function for
return vectors that is itself a function of a covariance ma-
trix. The covariance matrices we consider are functions of
decay rates. Thus, we will search over decay rates to find
the one for which the subsequent return data is most con-
sistent based on the probabilities defined by the likelihood
function.

One key assumption in this approach is the form of the dis-
tribution for future returns. We have to allow for fat tails.
If, instead, we were to assume the distribution is multi-
variate Normal, then the occasional very large return vec-
tor would be viewed by the likelihood function as being very
unlikely, and the decay rate that maximizes the likelihood
of those few observations would be chosen. We choose a dis-
tribution that makes fat-tailed returns more likely in gen-
eral, since our objective is to be consistent with all the
returns. One simple fat-tailed distribution that we use is a
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mixture of Normals. That is, we assume that most of the
time return vectors are drawn from a low volatility state;
but every so often returns are drawn from a high volatility
state. We assume the correlations in both states are the
same (this assumption may be relaxed in future research),
and we assume that all the volatilities in the high volatility
state are a constant multiple of the volatilities in the low
volatility state. For a given decay rate, we estimate a prob-
ability of being in the high state, the ratio of the volatilities
in the two states, and the two resulting covariance matri-
ces. Given these, the likelihood of any sample can then be
computed (since we’ve assumed a particular distribution for
future returns). The sample we look at is the k-day returns
during an investment horizon subsequent to the data pe-
riod over which the covariance matrices are estimated. The
likelihood measures the probability that the given sample
was generated by the assumed distribution and the esti-
mated parameters (i.e., the variances and covariances).
Since the estimated variances and covariances depend on
the decay rate, the likelihood function also depends on the
decay rate. Thus, the objective is to pick a decay rate that
maximizes the likelihood function. Since changing the in-
vestment horizon changes the specific return sample of the
optimization problem, the optimal decay rate can be ex-
pected to change as well. (Appendix B provides mathemati-
cal detail on the likelihood function.)

A Mixture Distribution
Produces Fat Tails

At Goldman Sachs, we assume that daily returns follow a
mixture of Normal distributions rather than a single Nor-
mal distribution. As discussed above, we assume that re-
turns are generated by a low volatility regime coupled with
periodic episodes of high volatility. The range of projected
daily returns will depend on the volatilities in the low and
high volatility regimes and the probability of each regime’s
occurrence.



Risk
Management
Series

19

In Exhibit 7, we contrast a Normal distribution with a mix-
ture distribution. In each distribution, the standard devia-
tion is equal to one. (Of course, the volatility of the mixture
distribution will depend on the volatility in each of the re-
gimes and the probability of each regime’s occurrence). Fat
tails are created by shifting “probability mass” from the
one- to two-standard-deviation range (in absolute value
terms) to the other regions of the distribution. Relative to a
Normal distribution, the mixture distribution has more
probability mass between zero and plus or minus one stan-
dard deviation, and beyond plus or minus two standard
deviations. (Exhibit 5 provides a practical example).

How does a mixture distribution help us find optimal decay
rates? When returns are really distributed with a mixture
distribution, but a Normal distribution is assumed, the de-
cay rate will be suboptimal. In other words, the decay rate

Exhibit 7

Comparing a Mixture Distribution
With a Normal Distribution
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that maximizes the log-likelihood function under a Normal
distribution will be different from the decay rate when re-
turns really follow a mixture distribution, since the Normal
distribution cannot account for the large number of returns
outside the two-standard-deviation range.

Exhibit 8 illustrates this point by contrasting the optimal
decay rates for German 10-year bond returns. We found de-
cay rates by maximizing the likelihood function for a one-
day horizon under two distributional assumptions: The first
optimal decay rate assumes that returns are Normally dis-
tributed, while the second assumes that returns are gener-
ated with a mixture distribution. The decay rates were
estimated using daily returns on German 10-year bonds
from January 1, 1992, through December 31, 1996. As
shown in the table, the optimal decay rate is 5% when a
Normal distribution is assumed versus 3% when a mixture
distribution is used.

Exhibit 8 also shows the corresponding values of the log-
likelihood function. With the Normal distribution, the value
of the log-likelihood function is -267.41, whereas with the
mixture distribution, the value of the log-likelihood function
is -246.10. The two log-likelihood values can be compared
directly, as the single Normal distribution is the limiting
case of the mixture distribution.6 Since the log-likelihood
function takes on a higher value in Exhibit 8 when the
mixture distribution is used, we can conclude that in this
example, the Normal distribution assumption does not

                                               
6 We can test for the significance of the differences by using a likeli-

hood ratio test. This test shows that we can reject the hypothesis of
no difference at the 1% level.

Exhibit 8

Decay Rates for German 10-Year Bond
One-Day Horizon

Distribution Decay Rate Likelihood Function

Normal 0.05 -267.41
Mixture 0.03 -246.10
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account for the extraordinary number of “explosive”
returns.7

Exhibit 9 illustrates the effect of an extraordinary number
of “explosive” returns. The chart plots the marginal contri-
bution of each day’s return on the value of the log-likelihood
function from January 1, 1992 through December 31, 1996
(giving 1,302 daily observations), using a Normal distribu-
tion and the optimal decay rate of 5%. When the distribu-
tion is Normal, the marginal contribution of each day’s
return on the value of the log-likelihood function is simply
the squared daily return divided by the predicted variance
                                               
7 How does decaying the data compare with using a rolling window? In

principle, each method is attempting to estimate the volatility of as-
set returns by giving more weight to more recent data. The difference
is that when we decay the data, we use all of the asset’s history of re-
turns. By contrast, a rolling window actually eliminates some of the
return history and therefore eliminates one source of information.
The contrast between using a rolling window and decaying the data
can be seen by looking at the likelihood function. For the German 10-
year bond, the optimal decay rate for a one-day horizon is 5%, and the
value of the logarithm of the likelihood function (log-likelihood) is
-267.41. By contrast, the optimal window for the German 10-year
bond is 110 days, and the corresponding value of the log-likelihood
function is -285.62. (We found the optimal window size by searching
through window sizes to find the size that maximized the one-day-
ahead likelihood function). Clearly, there is a potential gain in esti-
mating volatility by using a decay rate rather than a rolling window.

Exhibit 9

Marginal Contributions to Likelihood
German 10-Year Bond Returns

Note: Assumes Normal distribution and 5% daily decay.
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(or volatility squared): as the squared daily return in-
creases, the marginal contribution to the log-likelihood
function increases. As the chart illustrates, there are 60
days that are outside two standard deviations, which is 16
more than would be predicted if German 10-year bonds ac-
tually followed a Normal distribution.

Now suppose that this sample’s 27 largest daily returns
equaled the average of the 27 smallest returns (in absolute
value). In other words, 27 daily returns are shifted from
outside two standard deviations to inside one standard de-
viation. Under this scenario, the optimal decay rate
(assuming a Normal distribution) is now 4%, and the value
of the log-likelihood function is -127.94. Thus, in this ex-
ample, the effect of assuming a Normal distribution when
returns are really fat-tailed is to “overdecay” the data.
(Cases could also exist where the Normal distribution as-
sumption leads to “underdecaying” the data.)

The implication of suboptimal decay rates is to induce more
uncertainty in our volatility estimates. In a portfolio set-
ting, additional uncertainty in our volatility estimates im-
plies less confidence in our estimates of VaR. Consequently,
portfolio managers (a) will not get maximum leverage from
their portfolio management decisions (e.g., position sizes for
trading portfolios or deviations from benchmark for funds
managed against indexes) and (b) will still run the risk of
larger-than-expected performances outside a two-standard-
deviation range.

The Decay Rate Decreases
as the Investment Horizon
Increases

A second important element that influences the optimal de-
cay rate is the choice of investment horizon — i.e., how long
the investor expects to hold the portfolio or position. Typi-
cally, as the length of the investment horizon increases,
more of the historical data are used to calculate volatility
(and correlations). The optimal decay rate for a one-day in-
vestment horizon is higher than the optimal decay rate
when the portfolio is rebalanced every three months. Thus,
the optimal estimator of volatility for a three-month horizon
is not merely a scaled-up version of the optimal estimator
for a one-day horizon.

Suppose that asset returns were independently distributed
across time with a constant variance. Under these assump-
tions, one strategy would be to determine the optimal decay
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rate for a one-day horizon and then scale the daily volatility
estimate up by the square root of time for longer horizons.
For example, the volatility estimator for a one-month hori-
zon would simply be the volatility estimator for a one-day
horizon multiplied by the square root of 22 (assuming 22
trading days in one month).

As discussed in the preceding section, most financial time
series do not have a constant variance. Indeed, most finan-
cial time series can be characterized by time-varying daily
volatility that seems to mean-revert to some longer-run
volatility. For daily rebalancing horizons, our inclination is
to give more weight to previous daily volatility and less to
the longer-run horizon. Under this scenario, we would be
led to assign more weight to more-recent daily returns. By
contrast, when the rebalancing horizon is infinitely long,
we would naturally be inclined to give more weight to the
longer-run volatility and less to particular daily volatilities.
We can achieve this end by applying more weight to the
past returns (in other words, less weight to more-current
returns).

We can illustrate the relationship between the investment
horizon and the optimal decay rate by returning to our ex-
ample of German 10-year bond returns. We have already
seen that the optimal decay rate for a one-day horizon is
3% when we assume that returns are generated by a mix-
ture distribution (recall that the mixture distribution helps
us account for fat tails). What happens to the decay rate
when our investment horizon increases?

Exhibit 10 shows the optimal decay rates for the German
10-year bond at one-day, one-week, and one-month invest-
ment horizons. As with the previous examples, the sample
consists of daily excess returns on German 10-year bonds
from January 1, 1992, through December 31, 1996. As ex-
pected, the optimal decay rates depend on the investment
horizon. Over the shortest time horizon, when less histori-
cal information is likely to be useful, the decay rate is 3%.
However, as the investment horizon increases, the infor-
mation content in past returns also increases, and the de-
cay rate decreases. As shown in the table, at a one-month
horizon the optimal decay rate is 1.5%.
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Does the choice of investment horizon make a practical dif-
ference for managing large portfolios? Quite clearly, the an-
swer is yes. Investors or traders who do not calibrate their
volatility and correlation estimates according to the pro-
jected rebalancing period run the additional risk of mis-
estimating volatility and consequently will not take the
proper portfolio management decisions when they are re-
quired. For example, scaling up a daily volatility estimate
by the square root of time during periods of low volatility
implies that insufficient weight is given to historical periods
of high volatility. For longer horizons, the projected VaR
will tend to underestimate the “true” VaR.

What Happens When
We Add Assets?

The final issue that we need to confront is what to do about
adding more assets. In other words, how should the extra
information provided by co-movements between assets be
handled. The reason adding assets presents a challenge is
that the dimension of the covariance matrix increases by
the factor [N(N+1)/2], where N is the number of assets,
rather than linearly. For example, a two-dimensional co-
variance matrix (two assets) has three separate parameters
of interest, a three dimensional covariance matrix (three
assets) has six separate parameters, etc. As we increase the
size of the covariance matrix by adding assets, we introduce
an additional element of uncertainty into the estimation
process. Indeed, for large-scale problems, there will typi-
cally be insufficient data to construct a well-behaved co-
variance matrix. This implies that analysts must reduce
the dimensionality of the problem (for instance, by using
factor models). However, a potential price for solving a more
parsimonious problem could be a reduction in the ease of
computation.

Exhibit 10

Decay Rates for the German 10-Year
(Assumes Mixture Distribution)

Horizon Decay Rate
One Day 0.030
One Week 0.023
One Month 0.015



Risk
Management
Series

25

At Goldman Sachs, we maintain the assumption that re-
turns are generated by a mixture of Normal distributions,
but we replace the assumption of a univariate distribution
with that of a multivariate distribution and add terms that
account for co-movements between asset returns. Of course,
when we add these terms, we also need to describe their co-
movements in each regime. As discussed above, we assume
that the correlation structure is the same in each regime
(an assumption that will be the subject of future research).
Nothing else fundamental really changes, though; we still
want to find decay rates that maximize the log-likelihood
function at different horizons.

Let’s look at the effects of including more assets by expand-
ing our German 10-year bond example to include the Ital-
ian 10-year bond. As in the previous examples, the data set
includes daily returns from January 1, 1992, through De-
cember 31, 1996. Once again, the objective is to find a de-
cay rate that maximizes the likelihood function.

Exhibit 11 contrasts decay rates for German and Italian 10-
year bonds at horizons of one day, one week, and one
month. The table shows decay rates for each market under
univariate and bivariate assumptions. As in the univariate
case, the decay rate decreases as the investment horizon
increases. However, as the table makes clear, the optimal
decay rate depends on the number of assets. The optimal
decay rate for the bivariate problem is different from that
of either univariate problem.

An alternative possible approach would be to find optimal
decay rates for portfolios of assets. In this approach, a one-
dimensional time series of returns is developed from a port-
folio of asset returns, and an optimal decay rate is found for
the portfolio returns. An optimal decay rate (in some sense)
can be found by experimenting with many such portfolios.
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This approach has the advantage of reducing the problem
to a manageable size, particularly when the only variable of
interest is the overall portfolio volatility (VaR). However,
this approach gives no useful information on the covariance
terms, which is a drawback for broader risk management
and asset allocation problems. Indeed, knowledge of the co-
variance terms is crucial for an understanding of the risk
structure of a portfolio, as well as for determining an opti-
mal set of portfolio weights.

At Goldman Sachs, we are continuing to explore alternative
methods for estimating covariance matrices with a large
number of assets. As discussed, the issue is to find methods
that are easy to compute yet provide answers to risk control
and optimization problems.

In this section, we have discussed the covariance matrix
estimation procedures used at Goldman Sachs. We have
also discussed some of the trade-offs involved in selecting
various parameter values, Of course, other estimation
methods have been proposed by practitioners. In the next
section, we discuss some of these methods and their rela-
tionship to the approach taken at Goldman Sachs.

Exhibit 11

Decay Rates for
Italian and German Bonds

Decay Rate

Horizon Germany Italy Combined

One Day 0.030 0.040 0.020
One Week 0.025 0.023 0.018
One Month 0.015 0.015 0.010



Risk
Management
Series

27

Implied Volatilities One popular method for estimating volatility is to use the
volatilities implied by options markets. Rather than use
historical data on asset returns, this method uses actual
option prices with an option pricing model to infer an as-
set’s implied volatility. This approach has the apparent ad-
vantage of giving indications about volatility that are
consistent with the expectations of market participants.
Since implied volatilities are calculated with market prices
for the underlying security and the option, they can also be
regarded as being “forward-looking” estimates of volatility.
However, several distinct disadvantages exist in systemati-
cally applying implied volatility to risk management and
asset allocation problems.

The first issue that is important in the context of both risk
management and asset allocation is the range of financial
products. If implied volatilities are to be useful, they must
cover the range of products likely to be of interest to risk
managers and asset allocators. Although sufficient liquidity
across a broad product range may exist in the future, such
is not the case at present. Even for the simplest of asset
allocation problems (e.g., managing a global bond fund),
there are too few derivatives products with sufficient liquid-
ity for implied volatility to be useful. From the perspective
of broader risk management, the problem is compounded.
At Goldman Sachs, we view our portfolio in the context of
more than 2,000 risk factors, each of which represents a
specific financial product. Actively traded derivatives are
available for only a handful of these products.

A second, and related, issue is the estimation of covari-
ances. As the name suggests, implied volatility provides a
snapshot of market participants’ beliefs regarding volatility.
However, there are too few products with prices sensitive to
correlation to provide a similar snapshot on covariance.

IV. Alternative
Covariance Matrix
Estimation Methods

The driving force behind all the techniques that have been
proposed for estimating the covariance matrix is the desire
to account for the empirical regularities described in Section
II. This section discusses some of these alternatives and
compares them with the method used at Goldman Sachs.
The four principal methods we discuss are implied volatili-
ties, GARCH, Markov chains, and identification of station-
ary and transitory components.
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Finally, it is important to bear in mind that implied volatil-
ity is the result of applying an options pricing model to ob-
served options prices. Consequently, practitioners who rely
on implied volatility expose themselves to modeling risk. In
other words, practitioners will need to evaluate whether
their implied volatility figures are being generated by a
reasonable model (which is a good practice for any model).8

The issues described above suggest that a broad role may
not (yet) exist for implied volatilities in risk management
and asset allocation. However, a narrower role may exist.
Specifically, implied volatilities can be used as a diagnostic
tool for models based on historical data. Thus, covariance
matrix estimation and risk management and asset alloca-
tion procedures can be improved by using implied volatili-
ties as a diagnostic tool.

GARCH Models Are Similar
to Decayed Daily Data

The GARCH (generalized autoregressive conditional het-
eroscedastic) method for estimating volatility assumes that
the current level of the variance (i.e., squared volatility) de-
pends on past variances and current and past squared re-
turns. Using notation, we can write this idea as:

(3) var( tR ) = 0
1

1
2A A R B R

i

I

i t i
i i

J

j t j+ ∑ + ∑
=

−
=

+ −var( )

Assuming that the values of iA  and iB are positive, equa-
tion (3) shows that the current variance will be above its
long-run mean during periods of high volatility. Further-
more, periods of abnormally large returns (either positive or
negative) will increase the current level of volatility. In
addition to accounting for fat-tailed distributions of asset
returns, the GARCH representation also captures the “vola-
tility clustering” that is typically observed with financial
time series.

To implement a GARCH model, the analyst must establish
the amount of history to be used (i.e., the value of I) and
then estimate values for iA and iB . These parameters can
be estimated with maximum likelihood methods.

                                               
8 For a detailed discussion of these considerations, see Derman (1996).
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Suppose that I and J are known to be one, and that 0A  is
known to be zero. Under these assumptions, equation (3)
can be simplified to:

(4) var( tR ) = 1 1A Rtvar( )− + 1
2B Rt

Notice that equation (1) — the equation that represents the
variance as an exponential decay — can be conveniently
rewritten as:

(1′) var( tR ) = ( ) ( )var1 1
2− +−t t t tw R w R

Comparing equations (4) and (1′) shows that estimating the
variance by decaying daily data is equivalent to using a
very simple GARCH model. Alternatively, equation (1′) can
be interpreted as a restricted GARCH model. In other
words, by decaying daily data, we are implicitly using a
GARCH model but imposing a restriction on how the data
are generated.9

One of the features of the GARCH modeling procedure is
that it provides an exact equation for the conditional vola-
tility over multiple-period horizons. That is, once we know
the parameters for a GARCH process estimated on daily
data, we can find the conditional volatility for both one-day
and multiple-period horizons. Thus, such a model would
provide a more consistent way to estimate volatilities over
longer time horizons than estimating separate covariance
matrices with different decay rates. The fact that we find
different decay rates to be optimal for different horizons
suggests that their use is best viewed as a simple and com-
putationally less intensive way to represent a more complex
model that would build in mean reversion of volatility.

It is important to bear in mind that GARCH models and
mixtures of Normals are attempting to account for the
same empirical regularities. Since we can never know the
“true” data generating process, we are forced to use some
sort of model and thus expose ourselves to potential specifi-
cation error. Consequently, for practical purposes, we must
consider the trade-off between using a more complicated
model (one that could potentially bring us closer to the

                                               
9 In principle, the restriction can be tested. However, we have not done

so for the purposes of this paper.
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“true” data generating process) and computational ease. In
the context of GARCH model, this issue comes up when
more assets are added.

Suppose that instead of a single asset, we now have two as-
sets. In this case, we need to expand the model to describe
the behavior of the variance of returns for the second asset
and describe the covariance between the returns on the
second asset and the first asset. Let’s continue in the simple
environment and assume that each asset’s current variance
depends on its most immediate past variance and the as-
set’s current squared return. Furthermore, let’s assume
that the current covariance depends on the most immediate
past covariance and the product of the returns on both as-
sets. Using these simple assumptions, we will need to esti-
mate six parameters to implement a GARCH model.

Notice that the number of parameters does not increase
linearly. For example, if we continue to restrict I to be one
but add another asset, we now have 12 parameters to esti-
mate. Indeed, if we have N assets in the covariance matrix,
and I is set to one, we will need to estimate (N+1)×N pa-
rameters to implement a GARCH model. Since an unre-
stricted GARCH model has so many parameters, it stands
to reason that the estimation process can be quite compu-
tationally burdensome.

Markov Chains Add
Volatility Clustering

An alternative approach to generating fat tails and volatil-
ity clustering is to expand on the idea of mixture distribu-
tions by adding more structure to the probability of each
regime’s occurrence. In the previous section, we assumed
that returns are drawn with some probability from either a
low- or a high-volatility regime. We also assumed that each
day’s return is independent of previous returns.

With a Markov chain, we relax the idea that regimes are
independent across time. More specifically, we add an as-
sumption that makes the probability of drawing from each
regime dependent upon the current regime. When we have
two possible volatility regimes (low and high), there are
now four additional probabilities to be considered: the
probability of drawing next period from the low volatility
(or high volatility) regime when we are currently in the low
volatility regime, and the probability of drawing from the
low volatility (or high volatility) regime when we are cur-
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rently in the high volatility regime. These additional prob-
abilities are called the transition probabilities.10

As with other methods, including transition probabilities
has costs and benefits. Recall from the discussion in the
previous section that using mixture distributions gives us
fat-tailed distributions. Including the transition probabili-
ties has the advantage of generating volatility clustering.
However, the disadvantage is that including the transition
probabilities means that we increase the number of pa-
rameters that must be estimated. We are continuing to ex-
plore the use of Markov chains for risk management and
asset allocation problems.

Stationary and Transitory
Components

A final technique for estimating the covariance matrix is to
build on the idea of volatility regimes by adding an eco-
nomic interpretation. More specifically, returns are viewed
as coming from a combination of stationary and transitory
components. In this framework, asset returns are largely
driven by the stationary component. However, there are peri-
ods when asset returns drift away from the stationary com-
ponent. These periods are called the transitory component.11

During the periods when returns are generated by the sta-
tionary component, the distribution of asset returns is as-
sumed to be Normally distributed with a constant mean
and a constant variance. Consequently, the volatility of as-
set returns over longer time horizons when returns are
generated by the stationary component is merely the vola-
tility of the daily return times the square root of the time
horizon.

However, returns are not always generated by the station-
ary component. In the transitory component, asset returns
are assumed to be generated by a distribution that also has
a constant daily variance, but whose expected return is
mean-reverting. In this setup, the volatility of an asset’s re-
turn over longer horizons is no longer merely the volatility
of the daily return times the square root of the horizon.
Now, the volatility over longer horizons depends on the pa-
rameters of the mean reversion process. In other words,

                                               
10 For additional information on Markov chains, see Hamilton (1994).
11 See, for example, Chou and Ng (1995).
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volatility in the transitory component depends on how far
away the observed return is from the long-run mean in the
transitory component.

By combining the stationary and transitory components, we
can see that the unconditional covariance matrix depends
upon the investment horizon. The dependence on the in-
vestment horizon is a consequence of mixing distributions
with different variances and the dependence of the transi-
tory component on the mean-reversion parameters. Notice
that the distinction between this approach and the mixture
distribution approach discussed earlier is the addition of an
economic structure to one of the volatility regimes.

The analysis of stationary and transitory regimes can be
further enhanced by adding assumptions about the transi-
tions between regimes. The easiest such assumption is that
the regimes are independent across time. In other words,
knowledge of the current regime provides no information
about the regime most likely to occur next period. Under this
assumption, analytic solutions for the covariance matrix can
be easily derived and shown to depend on the parameters of
the mean-reversion process and the investment horizon.

Alternatively, we could assume that regimes are not inde-
pendent across time and formulate explicit transition prob-
abilities. As discussed above, including explicit transition
probabilities has the advantage of additional realism but
also imposes additional computational burdens.

At Goldman Sachs, we are continuing to explore the appli-
cability of this technique — modeling stationary and transi-
tory components — to large-scale risk management and
asset allocation problems. Our research looks at various as-
sumptions about the structure of the transition probabilities.
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To consider a simple illustrative example, suppose that we
model German bond returns as functions of two observable
variables: changes in the level of German 10-year interest
rates and changes in the slope of the German curve. We
will model the slope of the German curve as the yield
spread between 10-year and two-year bonds. By relating
the two interest rate variables to underlying economic fun-
damentals (e.g., German GDP growth), this structure al-
lows us to develop optimal portfolio strategies, given views
on these same fundamentals. Of course, to implement any
such strategy, we will need to determine the responsiveness
of German bond returns to our two interest rate variables
(Note that we could add even more structure to our model
by making explicit assumptions about the dynamics of our
interest rate variables).

The relationship between German bond returns and our
two interest rate variables can also be used when we have
no views on fundamentals. For instance, suppose that we
have no view on underlying fundamentals, but that we
wish to exploit mispricings in the German bond market.
Under this “view,” we may wish to find a portfolio of securi-
ties that is neutral with respect to changes in level or slope.
Once again, this portfolio is dependent on the sensitivity of
German bond returns to the two interest rate variables.

One popular approach to identifying these parameters is to
regress individual bond returns on yield changes and
changes in the slope of the curve — using, say, least
squares methods.12 For example, if we restrict our attention
to the six benchmark bonds (two-year, three-year, five-year,
seven-year, 10-year, and 30-year) in Germany, we have a
set of six regressions that we can use to obtain a set of sen-

                                               
12 See, for example, Singleton (1994).

V. Covariance Matrices
and Structural Models

Covariance matrix estimation also plays an important role
in identifying parameters for structural models. Structural
models relate the sensitivity of asset returns to changes in
underlying fundamentals. They are used to provide signals
about expected returns based on projections of these same
fundamentals. Since the parameters in structural models
are also related to the composition of the covariance matrix,
how the covariance matrix is estimated has important im-
plications for the identification of structural parameters.
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sitivities. We can explore this idea a bit further by introduc-
ing some simple notation.

Let iR  denote the return on the ith German benchmark
bond, dl denote the change in the level of the German 10-
year bond, and ds denote the change in the slope of the
German curve. We will assume that the level and slope ef-
fects are independent of each other. We denote the sensitiv-
ity of the bond’s return to changes in level and changes in
slope as i

lb  and i
sb . Finally, suppose that there is an error

term for each bond that has a zero mean, has some vari-
ance, and is independent across time. With this notation,
we can write each bond’s return as:

(5) i i i
l

i
s

iR b bdl b ds e= + + +0

We can also use equation (5) to represent the variance of any
bond’s return in terms of the underlying structural parameters

i
lb  and i

sb  and the residual variance. Equation (5) implies that:

(6) var( iR ) = i
l

i
s

ib dl b ds e
2 2

var var var( ) ( ) ( )+ +

By applying equation (5) to two bonds, we can easily see that
the covariance between them depends on the level and slope
parameters. If we denote the covariance between bonds i and j
as cov( i jR R, , ) and apply equation (5), we see that:

(7)  cov var var cov( , ) ( ) ( ) ( )i j i
l

j
l

i
s

j
s

i jR R b b dl b b ds e e= + +

Equation (7) tells us that the covariance between any two
bonds depends on the variance of the level and slope effects,
the relative exposures of each bond to these effects, and the
covariance between the two error terms. (Notice that if this
covariance is zero, then equation (7) implies that no infor-
mation is lost by estimating the sensitivities independently
of each other).

Our discussion in the previous section argued that it is
more efficient to use decayed daily data than equally
weighted daily data in estimating the variances and co-
variances between asset returns. Equations (6) and (7)
show that the covariances between asset returns depend on
the covariances between the two observable factors and the
estimated sensitivities. These relationships suggest that we
can improve upon the estimation of the underlying struc-
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tural parameters by applying a similar decay rate to the
two observable parameters.

Exhibits 12 and 13 explore this point by contrasting three
estimates of the correlation matrix of German benchmark
bond returns. In Exhibit 12 we show the level and slope co-
efficients estimated using three different procedures, with
daily data from January 1, 1992, through December 31,
1996. All three procedures use least squares regression and
differ only in how the data are treated. The first procedure
finds the coefficients by equally weighting all of the data in
the sample. In the second procedure, we estimate the coef-
ficients using equally weighted data over the final 90-day
period. (This procedure can be interpreted as the last win-
dow in a time series of rolling 90-day windows). The third
procedure estimates the level and slope coefficients by ap-
plying a 3% daily decay rate to all of the data (returns,
change in level, and change in slope).

Exhibit 13 illustrates the effects of the differences in esti-
mation methods. In this exhibit, we use the relationships
between the observable variables and the covariance ma-
trix to find the volatilities and correlations of German bond
returns implied by equations (6) and (7). Each correlation
matrix shows volatility of bond returns down the main di-
agonal, with correlations shown on the off diagonals. Ma-
trix A in Exhibit 13 shows the correlation matrix consistent
with equally weighted data, matrix B is consistent with the
final 90 days of history, and matrix C is consistent with a
3% daily decay rate. As Exhibit 13 illustrates, the differ-
ences among the correlation matrices are quite striking.

Exhibit 12

Factor Coefficients

Entire Sample Final 90 Days Daily Decay

Level Slope Level Slope Level Slope

Two-Year -1.6277 1.4641 -1.6847 1.3850 -1.6053 1.1843
Three-Year -2.5596 1.1949 -2.8702 1.6318 -2.7971 1.4592
Four-Year -3.7807 1.1883 -4.7283 1.8111 -4.7752 1.6199
Five-Year -4.2372 1.1795 -4.9028 1.7269 -4.8973 1.5408
Seven-Year -5.4415 0.5432 -6.2186 0.9418 -6.3687 0.9203
10-Year -6.9760 0.1118 -7.0690 0.1325 -7.2167 0.2586
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The importance of these differences can be seen in the con-
text of an example. Suppose that our objective is to hedge a
long position in the five-year bond with short positions in
the two- and 10-year bonds. Furthermore, suppose that we
choose the two short positions so as to match exposure to
the level and slope effects. The short positions can be found
by applying equation (5).13 Clearly, as we increase the accu-
                                               
13 Assume a long position of 1.0 in the five-year bond, and denote the

short positions as 2X  and 10X . The short positions are given as:

2X  = { }s l l sb b b b A10 5 10 5−

10X  = { }l s sb b b b A2 5 2
1
5−

A  = { }1 2 10
1
10 2/ ( )l s sb b b b−

Exhibit 13

Three Covariance Matrices

A. Entire Sample
2-Year 3-Year 4-Year 5-Year 7-Year 10-Year

2-Year 1.56

3-Year .96 2.02

4-Year .91 .99 2.83

5-Year .90 .99 .99 3.15

7-Year .81 .94 .98 .99 3.91

10-Year .75 .91 .96 .97 .99 4.99

B. Final 90 Days
2- Year 3-Year 4-Year 5-Year 7-Year 10-Year

2-Year 1.24

3-Year .97 2.55

4-Year .96 .99 3.08

5-Year .96 .99 .99 3.17

7-Year .90 .98 .99 .99 3.91

10-Year .85 .96 .96 .97 .99 4.41

C. Decayed Sample
2-Year 3-Year 4-Year 5-Year 7-Year 10-Year

2-Year 1.22

3-Year .99 2.00

4-Year .96 .99 3.26

5-Year .96 .99 .99 3.33

7-Year .92 .96 .99 .99 4.22

10-Year .88 .94 .97 .98 .99 4.76
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racy of the estimated structural parameters, we will reduce
the variance of the resulting portfolio.

Exhibit 14 shows the annualized daily portfolio volatility
using each of the three methods outlined above. Each
volatility was estimated by first finding the appropriate
daily hedges using only the information available at that
date, and then calculating the actual one-day-ahead return
on the portfolio. As the table indicates, when more weight
is given to more recent data, the portfolio volatility de-
creases. The model that equally weights the entire history
performs worse than the 90-day rolling window or the 3%
daily decay. However, the 90-day rolling window also per-
forms worse than the 3% daily decay.

This example illustrates how the choice of covariance ma-
trix estimation method matters for finding hedges. That the
choice matters for this example should not be surprising;
the 3% daily decay rate was initially chosen to make the
covariance matrix between German bond returns consis-
tent with empirical regularities. The premise behind the
model in equation (5) is that we can relate bond returns to
two observable factors. For actual bond returns to generate
the types of empirical regularities we have discussed, then
according to equation (5), the source of the empirical regu-
larities must be in either the two observable factors, the er-
ror term, or both. The example further illustrates a more
general principle: Any structural model should produce a
predicted covariance matrix that resembles the actual co-
variance matrix of asset returns.

Of course, the model shown in equation (5) is a very simple
one. We could gain additional insight by imposing addi-
tional structure. For example, we could add more structure

Exhibit 14

Historical Hedge Performance

Regression Assumption Daily Volatility

Equally Weighted 0.079
90-Day Rolling Window 0.075
Decayed Daily Data 0.073

Note: All regressions use daily data. All performance results are out of sample.
The data range is January 1, 1993, through December 31, 1996.
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by using an equilibrium term structure model; our parame-
ters of interest would be those generating the underlying
state variables. As in our simpler example, our estimated
parameters will also imply a covariance matrix, and in fact
we can use the sample covariance matrix of asset returns as
part of the procedure for finding the structural parameters.

What advantages accrue from using equilibrium models?
One obvious advantage is that equilibrium models can add
a “smoothing” to the covariance matrix. This issue becomes
more acute when we face large-scale risk management or
asset allocation problems. As assets are added to the co-
variance matrix, its dimension increases and more noise is
introduced in the sample covariance matrix. The addition of
noise to the sample covariance matrix introduces more un-
certainty into the estimation of risk, risk decomposition,
and optimal asset allocations. A structural model (or factor
model) allows us to represent the covariance matrix of asset
returns in terms of a parsimoniously chosen set of underly-
ing factors and has the potential of reducing the uncer-
tainty surrounding risk estimation and optimal portfolio
selection.

VI. Conclusions Covariance matrices are important for coping effectively
with many day-to-day problems in modern finance.
However, since covariance matrices cannot be observed
directly, they must be estimated. A well-estimated
covariance matrix has important implications for
calculating a portfolio’s Value at Risk and identifying its
major risk contributors. Since covariance matrices are
critical for finding sources of risk, they are also crucial for
constructing hedges (in either the cash or derivatives
markets). Finally, since optimal asset allocations are
functions of variances and covariances, a well-estimated
covariance matrix can lead to more-efficient portfolio
allocations.

This paper has described the approach currently used for
large-scale risk management and asset allocation problems
at Goldman Sachs, and contrasted it with some of the other
methods that are commonly used in the industry. While no
comprehensive method exists to estimate covariance matri-
ces, the methods used at Goldman Sachs do have the ad-
vantages of providing covariance matrices that are
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consistent with empirical regularities and computational
ease.

This paper has offered four contributions. First, it has
shown how a likelihood function can be used to find appro-
priate decay rates. Using a likelihood function means that
we can find decay rates for entire sets of asset returns
rather than on the basis of individual asset returns. A fur-
ther advantage of using a likelihood function is that we can
compare the effects of different distributional assumptions
(e.g. Normal distributions versus a mixture of Normals).

Second, this paper has shown that a mixture of Normals is
a more suitable distributional assumption for finding decay
rates. The assumption of a mixture of Normals leads to
volatility and correlation estimates that are consistent with
empirical regularities such as fat tails and time-varying
volatility (and correlation). As a result, the optimal decay
rates when a mixture of Normals is assumed are different
from those found when returns are assumed to be gener-
ated by a Normal distribution.

Third, this paper has shown that the optimal decay rate
depends on the investment horizon. More specifically, we
have shown that as the period between major rebalancings
increases, the distant past becomes more important for co-
variance matrix estimation. We view this result as suggest-
ing that volatilities and correlations are mean-reverting.
This finding also suggests that the mixture distribution ap-
proach should be amended to include a structure that al-
lows the rebalancing period to affect the likelihood of drawing
returns from the alternative distribution.

Finally, this paper has shown that the decay rate depends
on the dimension of the covariance matrix. When the num-
ber of assets increases, the decay rate also decreases (i.e.,
more weight is put on the distant past). More of the distant
past is used because more information is necessary to esti-
mate the covariance matrix parameters.

We have left several issues as open research questions,
which we are continuing to explore. Within the context of
the procedures described in the paper, there are four main
research topics. First, additional attention should be given
to the effects of adding more assets. As discussed, adding
assets implies that the dimension of the covariance matrix
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increases at a nonlinear rate. For portfolios with many as-
sets, a very real restriction on the covariance matrix esti-
mation is implied by the amount of available data.

A second open issue is the estimation of covariance matrices
through the use of factor models. The use of factor models
can potentially resolve some of the issues that arise when
large numbers of assets are included in the covariance matrix.

A third question that we continue to explore is the assump-
tion about correlations in different regimes. In our work to
date, we have assumed that covariances in the high volatil-
ity regime are scaled up to keep the correlation constant
between regimes. We could relax this assumption and let
the correlations vary between regimes. One potential ad-
vantage of relaxing the constant correlation assumption is
a model with higher explanatory power (as measured by a
higher value of the likelihood function). However, a poten-
tial disadvantage is the actual increase in the number of
parameters that will need to be estimated.

The final research question that we continue to examine is
the explicit estimation of the transition probabilities. While
our current procedures assume that returns are generated
by a mixture of Normals, we do not actually estimate the
probability of one regime following another (i.e., the transi-
tion probabilities). As with our other open research ques-
tions, the potential gains in explanatory power must be
balanced against the costs associated with the increased
computational burden. ■
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Appendix A. Covariance Matrices for Trading Portfolio Example

Below we present the covariance matrices for the trading portfolio example in the Introduction. The
initial covariance matrix was estimated using daily data from February 1, 1988, through December
31, 1996, applying a 15% monthly decay. The second covariance matrix uses monthly data over the
same period. Both covariance matrices show variances and covariances for currency-hedged 10-year
bonds.

Daily Data

Canada France Germany Italy Japan Nlg Spain Sweden UK US

Canada 64.60

France 16.33 23.88

Germany 20.95 18.56 26.73

Italy 18.20 22.82 20.11 59.74

Japan 0.54 6.27 5.45 6.94 31.82

Nlg 18.80 20.53 21.26 22.19 6.25 24.23

Spain 14.58 23.44 21.56 45.02 2.88 22.83 60.02

Sweden 11.86 22.60 19.88 33.17 11.84 22.00 32.57 50.24

UK 19.50 18.83 23.41 21.58 4.26 21.52 22.93 20.53 43.46

US 38.48 15.77 21.18 13.53 0.50 19.14 12.95 10.89 21.87 51.90

Monthly Data

Canada France Germany Italy Japan Nlg Spain Sweden UK US

Canada 61.41

France 24.08 41.24

Germany 22.35 28.91 31.74

Italy 28.07 39.11 22.48 102.31

Japan 25.38 16.23 16.64 11.26 38.78

Nlg 21.48 30.17 24.47 26.26 13.97 28.83

Spain 34.49 41.13 23.68 79.81 12.37 27.54 91.37

Sweden 34.86 34.90 23.52 57.81 15.43 28.57 65.59 94.90

UK 29.66 26.89 24.53 34.29 21.27 25.70 38.83 36.71 55.85

US 38.97 18.51 19.78 6.67 19.25 18.16 12.15 19.02 19.65 47.72
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Appendix B. The Likelihood Function When Returns Follow
a Univariate Mixture Distribution

In this appendix, we discuss the estimation of the decay rate when asset returns are distributed as a
mixture of Normals. For ease of exposition, we will assume that there are two possible regimes. We
assume that returns are Normally distributed in each regime, with a zero mean. Consequently, we
can characterize the regimes as low and high volatility regimes. We will also assume that returns are
independent across time: Each day’s return is uncorrelated with previous and future returns; i.e., the
probability of drawing from a particular volatility regime in the future does not depend on the current
volatility regime.

Using notation, we denote the density functions for the low and high volatility regimes as f Rt L( , )2σ
and f Rt H( , )2σ , respectively, and denote by p the probability of drawing from the low volatility regime.
Since the density functions are assumed to be Normal and centered at zero in each regime s, they will
have the following form:

(B1) f R
R

t s
s

t

s

( , ) exp+
+= −









1
2 1

2

2

1

2 2
σ

σ π σ

In this setup, on any given day the next day’s return will depend on each regime’s volatility and the
probability of each regime. More precisely, if L

2σ  and H
2σ  are known on date t, the density function

for tR +1  is given as:

(B2) g R p pf R p f Rt L H t L t H( , , , ) ( , ) ( ) ( , )+ + += + −1
2 2

1
2

1
21σ σ σ σ

For a sample of returns that begins on date 1 and continues through date T, the likelihood function is
written as:

(B3) L R t T g R pt
t

T

t L H( , ,...., ) ( , , , )= =
=

−

+1
1

1

1
2 2π σ σ

Suppose that the high variance is always a constant proportion of the low variance — in other words,

L
2σ  = Hk 2σ . Suppose further that we use equation (B1) to estimate H

2σ . By substituting into equation
(B2), the likelihood function now depends on three parameters: p (the probability of the low regime), k
(the constant variance proportion), and w (the decay rate). For any given value of w, we can find val-
ues of p and k that maximize the likelihood function. We find the optimal decay rate by repeating this
process for many values of w.

Notice that this framework contains the assumption of a standard Normal as a special case. For in-
stance, if returns are always generated by the low volatility regime, then p is always 1.0.
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